
 

 

 
 

 

 

 

1. Introduction 

Researchers have extensively investigated the economic order quantity (EOQ) model, 
focusing on scenarios where the demand rate remains constant. However, in real life, just like 
fashion products or new mobile phones, the demand for them varies over time, such as linear, 
ramp-type, exponential, price, stock, or expiration date dependent. On the other hand, some 
products, such as metal or stone, have zero or near zero deterioration rates, but not others, such 
as vegetables, fruits, or electronic appliances. Their deterioration varies with time, such as 
constant, exponential, or expiration date. From the perspective of these two factors, this 
manuscript will concentrate on ramp-type demand rates and the deterioration modeled by the 
three-parameter Weibull distribution. Related papers are demonstrated as follows.      
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Generally, a high-tech product's demand rate during the 
growth stages increases significantly with linear or 
exponential growth, and then, in the maturity stage, it 
remains almost the same. This is a so-called ramp-type 
demand rate. Additionally, a specific product may 
deteriorate over time. The more deterioration there is, the 
higher the order quantity. Based on this consideration, the 
deterioration rate could not be ignored. Therefore, this 
paper established a two-warehouse partial backlogging 
inventory model incorporating a ramp-type demand for 
three-parameter Weibull distribution deteriorating items. 
The main task is to derive an optimal replenishment 
strategy that minimizes the net present value of the total 
relevant cost per unit of time. The results of the proposed 
inventory system are verified through numerical examples 
and sensitivity analysis. The numerical result offers a 
reference for inventory managers to reasonably order 
quantities when facing a ramp-type demand rate with 
Weibull distributed deterioration. 
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1.1 Paper related to ramp-type demand 

In real life, for many new products, such as high-tech products or new brands of customer 
goods launched on the market, or seasonal products, their demand rates increase significantly 
during the linear or exponential growth phase and remain near constant in the maturity stage. 
The term "ramp type" represents such a demand pattern. Manna and Chaudhuri (2006) 
formulated an EOQ model accommodating a ramp-type demand rate, encompassing time-
dependent deterioration and shortages. Deng et al. (2007) highlighted inventory models 
addressing deteriorating items featuring ramp-type demand rates. Next onwards, Panda et al. 
(2008) studied an optimal replenishment policy for perishable seasonal products in a season with 
ramp-type dependent demand. Agrawal and Banerjee (2011) established a two-warehouse 
inventory model incorporating ramp-type demand and partially backlogged shortages. Skouri et 
al. (2011) outlined inventory models incorporating ramp-type demand rates, time-dependent 
deterioration rates, unit production costs, and shortages.  Agrawal et al. (2013) developed an 
inventory model for a two-warehouse system that accounts for deteriorating items, ramp-type 
demand, and partially backlogged shortages. Then, Halim (2017) posed a Weibull distributed 
distributing inventory model with ramp-type demand rate and full backlogging shortages. Shi 
et al. (2019) introduced optimal ordering policies for a single deteriorating item with a ramp-
type demand rate, accounting for permissible delay in payments. In the meantime, Yang (2019) 
constructed an inventory model addressing ramp-type demand, integrating two-level trade 
credit financing tied to order quantity. Hasan et al. (2021) introduced an EOQ model applicable 
to non-instantaneous deteriorating items with ramp-type demand within a two-warehouse 
setting.  Kumar et al. (2022) formulated a two-level storage inventory model addressing ramp-
type demand in inflationary conditions, incorporating partial backordering. Sethi et al. (2022) 
developed a fuzzy inventory model for deteriorating items with ramp-type demand and shortages 
in a two-warehouse setup. 

1.2 Paper related to two-parameter Weibull distribution 

Furthermore, deterioration refers to the degeneration or damage of items in storage. 
Sometimes, deterioration may lead to complete decay, rendering the product completely 
unusable and then turned into scrap. To this end, better preservation facilities can reduce the 
deterioration rate of the product and start the deterioration rate later than normal. Therefore, 
deterioration is a significant factor in analyzing inventory systems. That’s why thinking about 
deterioration is inevitable. Specific products such as seasonal foods, vegetables, and fruits 
deteriorate over time during their regular storage period. The degree of deterioration depends 
on time (linearly, quadratic, or exponential). However, certain items like steel, glassware, 
hardware, and toys exhibit a minimal rate of deterioration, requiring little consideration for the 
effect of deterioration when determining the inventory lot size. On the other hand, some items 
degrade over time, such as battery leakage failure, drug expiration, and so on. Failure rates 
increase with prolonged periods of item non-utilization. 

Early researchers, such as Covert and Philip (1973) devised an inventory model specifically 
designed for items undergoing deterioration, wherein the degradation rates fluctuate, and they 
utilized the two-parameter Weibull distribution to model the degradation behavior. Misra (1975) 
employed the two-parameter Weibull distribution to match the deterioration rate in the 
production lot-size model. Later, the EOQ inventory model developed by Wu (2001) 
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accommodated items undergoing deterioration characterized by a Weibull distribution alongside 
a ramp-type demand rate and partial backlogging. Deng (2005) produced an improved inventory 
model with ramp-type demand and Weibull deterioration. Again, Wee et al. (2005) constructed 
a two-warehouse inventory model to address deteriorating items characterized by a two-
parameter Weibull distribution and a constant partial backlogging rate in the presence of 
inflation. Lo et al. (2007) developed an integrated production-inventory model incorporating 
imperfect production processes in an inflationary environment, where product deterioration 
followed a two-parameter Weibull distribution. Panda et al. (2007) investigated an EOQ model 
featuring generalized ramp-type demand and deterioration following a Weibull distribution. 
Skouri and Konstantaras (2009) explored inventory models at the order-level for deteriorating 
seasonal or fashionable products, integrating a two-parameter Weibull deterioration rate, time-
dependent demand, and shortages. Skouri et al. (2009) simultaneously investigated an inventory 
model incorporating a general ramp-type demand rate, a two-parameter Weibull deterioration 
rate, and partial backlogging, applying two replenishment policies. Then, Mandal (2010) 
proposed an EOQ inventory model designed specifically for deteriorating items characterized by 
Weibull distribution, ramp-type demand, and shortages. Chołodowicz and Orłowski (2021) 
devised a fresh hybrid discrete-time perishable inventory model relying on Weibull distribution, 
integrating time-varying demand through a system dynamics approach.  Bankole et al. (2022) 
explored the EOQ approach for perishable goods characterized by a Weibull distribution and 
an exponential demand rate correlated with price. 

1.3 Paper related to three-parameter Weibull distribution 

The practical utility of the two-parameter Weibull distribution in real-world contexts may 
be limited in certain cases. The deterioration of some items commences only after they have 
been stored for a specific period rather than immediately upon storage. Therefore, a three-
parameter Weibull distribution proves to be more applicable in practical scenarios. Philip (1974) 
expanded upon the model that Covert and Philip (1973) proposed by incorporating a three-
parameter Weibull distribution. Chakrabarty et al. (1998) further developed Philip’s model 
(1974) to include shortages and linear trend demand. Giri et al. (2003) improved an EOQ model 
by incorporating a three-parameter Weibull deterioration distribution, shortages, and ramp-type 
demand. Later, Yang (2012) established a two-warehouse inventory model with a three-
parameter Weibull distribution deterioration under inflation in which shortages are partial 
backlogging. Bhunia and Shaikh (2014) proposed a deterministic inventory model for 
deteriorating items with demand influenced by selling price and a three-parameter Weibull 
distributed deterioration. Chakraborty et al. (2018) formulated a two-warehouse partial 
backlogging model featuring a ramp-type demand rate and deterioration described by a three-
parameter Weibull distribution, considering inflation and permissible delay in payments. 

 Then, Shaikh et al. (2019) devised an inventory model for a deteriorating item with a 
three-parameter Weibull distribution, incorporating variable demand influenced by price and 
frequency of advertisement under trade credit. The above property can be characterized in Table 
1. 
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Table 1. Major Characteristic of Inventory Models on Selected Articles 

Reference Demand  
Pattern 

Limited 
storage 
capacity 

Deterioration Backlogging Discounted 
Cash-flow 

Agrawal and 
Banerjee 
(2011) 

Ramp-type 2W No Partial No 

Skouri et al. 
(2011) Ramp-type No Time-dependent No No 

Yang 
 (2012) Constant 2W Three-parameter 

Weibull distributed Partial  Yes 

Agrawal et al. 
(2013) Ramp-type 2W Yes Partial No 

Bhunia and 
Shaikh (2014) 

Price-
dependent No Three-parameter 

Weibull distributed No No 

Halim 
(2017) Ramp-type No Two-parameter 

Weibull distributed Full No 

Chakraborty 
et al. (2018) Ramp-type 2W Three-parameter 

Weibull distributed Partial No 

Wu et al. 
(2018) Constant No Yes  No 

Shaikh et al. 
(2019) 

Price and 
frequency of 

advertisement-
dependent 

No Three-parameter 
Weibull distributed No No 

Shi et al. 
(2019) Ramp-type No Yes No No 

Yang 
(2019) Ramp-type  No No No No 

Chołodowicz 
and Orłowski 

(2021) 

Time-varying 
dependent No Two-parameter 

Weibull distributed No No 

Hasan et al. 
(2021) Ramp-type 2W Yes No No 

Bankole et al. 
(2022) 

Price-
dependent No Two-parameter 

Weibull distributed No No 

Kumar et al. 
(2022) Ramp-type 2W No Partial Yes 

Sethi et al. 
(2022) Ramp-type 2W Two-parameter 

Weibull distributed Partial No 

This paper Ramp-type  2W Three-parameter 
Weibull distributed Partial Yes 
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Remember that (i) the three-parameter Weibull distribution reduces to a two-parameter 
Weibull distribution when the location parameter is zero. (ii) The Weibull distribution 
transforms exponentially When the shape parameter equals 1. Hence, the three-parameter 
Weibull distribution provides a more generalized framework for analysis. 

 Therefore, contrary to the above articles, the proposed model deals with the demand rate 
as a ramp-type demand rate rather than a constant. This demand rate is different from that 
introduced by Yang (2012). The proposed model is a two-warehouse partial backlogging 
inventory model under inflation, which incorporates both the ramp-type demand rate and the 
three-parameter Weibull distribution deterioration. The deterioration distributions of the two 
warehouses are assumed to be independent. Several situations are discussed based on the 
numerical relationship between parameters and decision variables. The study's findings reveal a 
distinct and singular optimal solution for each case. Finally, it supplies numerical illustrations 
for clarity and conducts sensitivity analysis on various parameters. 

2. Assumptions and notation 

2.1 Assumptions 

Yang (2012) follows the assumptions used in this paper. The reader can refer to them for 
details.  

2.1 Notation 

Similarly, Yang (2012) follows the notation used in this paper except for the following.  

D(t) = the demand rate at time t. we assume that D(t) is constant and deterministic after the 
length of demand growth stage 𝜇 (in years), and D(t) is an increasing linear function of time t 
during the growth stage. That is,  

																			𝐷(𝑡) = (
𝑓(𝑡)						𝑡 < 𝜇
𝑓(𝜇),					𝑡 ≥ 𝜇, where 𝑓(𝑡) = 𝑎 + 𝑏𝑡, 𝑎 > 0, 𝑏 > 0. 

𝑐! = the deteriorated item cost per unit. 

𝑡" = the time at which the inventory level reaches zero in RW, where 	𝑡" > 0, and is defined as 
the stock period in RW. We here assume 𝛾" < 𝑡". 

	𝑡# = the time at which the inventory level reaches zero in OW, where 	𝑡# > 𝑡", and is defined 
as the stock period in OW. Without loss of generality, we here assume 	𝑡# > 𝜇. 

T = the replenishment cycle, when the shortage level reaches the lowest point in the 
replenishment cycle, where 	𝑇 > 𝑡#. 

𝑇𝐶$% = the present value of the total relevant cost per unit time for cases 𝜇 ≤ 𝑡" where i =1, 
2, 3, 4. 

= the present value of the total relevant cost per unit time for cases 𝜇 ≥ 𝑡"	where i =1, 2, 
3. 

𝐶&' = the present value of the inventory holding cost in RW. 

𝐶(' = the present value of the cost for the deteriorated items in RW. 

iTC2
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𝐶&) = the present value of the inventory holding cost in OW. 

𝐶() = the present value of the cost for the deteriorated items in OW. 

𝐶* = the present value of the backlogging cost in (𝑡#, 𝑇). 

𝐶+ = the opportunity cost due to lost sales in (𝑡#, 𝑇). 

3. Research models 

Two cases are to be considered for each model introduced by Yang (2012). However, in this 
paper, we only discuss the case of Model 1, in which the shortages are allowed at the end of the 
replenishment cycle, not at the beginning. Because of many fashionable or high-tech electronic 
products, their demand rates are increasing significantly, and shortages cannot be permitted. 

For the research model, at time t = 0, many specific units enter the system, and a portion 
is used to meet the partially backlogged items towards previous shortages. At initial, there are 
S units remain in the system, W units are kept in OW, and the rest (𝑆 −𝑊units) are stored in 
RW. OW goods are consumed only after the inventory goods are consumed in the rented 
warehouse. 

Due to the numerical relation between the parameters and decision variables, the model 
can be proposed in various cases. The details are shown in Figure 1. 

 

Fig 1. Graphical Illustration of Various Cases of The Proposed Model 

Next, we first consider the numerical relation between the parameter 𝜇 and the decision 
variable 𝑡", since the goods are depleted first in the rented warehouse. There are two parts to 
be discussed (i) 𝜇 ≤ 𝑡" and (ii) 𝜇 ≥ 𝑡"  
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3.1 Part 1: 𝝁 ≤ 𝒕𝒓 

      In RW, during , two cases need to be discussed: (i) 𝜇 ≤ 𝛾"  (ii) 	𝜇 ≥ 𝛾" . 
Furthermore, in OW, during (0, 𝑡#), depending on the relation between 𝛾# and	𝑡", there are also 
two cases to be considered, (i) 𝛾# ≤ 𝑡" (ii) 𝑡" ≤ 𝛾#. Therefore, in the replenishment of this part,  
there are four cases to be discussed: (1) 𝜇 ≤ 𝛾", 𝛾# ≤ 𝑡"  (2) 𝜇 ≤ 𝛾", 𝑡" ≤ 𝛾# (3) 𝜇 ≥ 𝛾", 𝛾# ≤
𝑡" (4) 𝜇 ≥ 𝛾", 𝑡" ≤ 𝛾#.  

Fig 2. Graphical Representation of The Research Model (where 𝜇 ≤ 𝛾" and 𝛾- ≤ 𝑡") 

 

Fig 3. Graphical Representation of The Research Model (where 𝜇 ≤ 𝛾" and 𝛾- ≥ 𝑡") 

 

) ,0( rt
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Fig 4. Graphical Representation of The Research Model (where 𝜇 ≥ 𝛾" and 𝛾- ≤ 𝑡") 

Fig 5. Graphical Representation of The Research Model (where 𝜇 ≥ 𝛾" and 𝛾- ≥ 𝑡") 

Now, we first discuss the model formulated in a rented warehouse. 

 

3.1.1 The model was formulated in a rented warehouse 

Case 1. 𝜇 ≤ 𝛾" 

 There is no deterioration, and the inventory gradually decreases due to demand in (0, 𝜇), 
where 0 ≤ 𝑡 ≤ 𝜇, after the changing point 𝜇, the inventory level depletes due to constant 
demand in (𝜇, 𝛾"), where 𝜇 ≤ 𝑡 ≤ 𝛾". The inventory level at time t is governed by the following 
differential equation: 
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    !.!(0)
!0

= −𝑓(𝑡),              0 ≤ 𝑡 ≤ 𝜇,                     (1.1) 

  !.!(0)
!0

= −𝑓(𝜇),              𝜇 ≤ 𝑡 ≤ 𝛾",                    (1.2) 

with the boundary condition 𝐼"(0) = 𝑆 −𝑊. During (𝛾" , 𝑡"), the inventory depletes due to 
both constant demand and deterioration, and it vanishes at 𝑡 = 𝑡"; it satisfies the following 
differential equation: 

!.!(0)
!0

= −𝑓(𝜇) − 𝑍"(𝑡)	𝐼"(𝑡),       𝛾" ≤ 𝑡 ≤ 𝑡",                   (1.3) 

with the boundary condition 𝐼"(𝑡") = 0. The solutions to (1.1)-(1.3) are as follows. 

𝐼"(𝑡) = 𝑆 −𝑊 −	∫ 	𝑓(𝜈)𝑑𝜈	0
	- ,       0 ≤ 𝑡 ≤ 𝜇,                    (2.1) 

𝐼"(𝑡) = 𝑆 −𝑊 −	∫ 	𝑓(𝜈)𝑑𝜈 − 𝑓(𝜇)(𝑡 − 𝜇)	3
	- ,    𝜇 ≤ 𝑡 ≤ 𝛾",            (2.2) 

and 

𝐼"(𝑡) = 𝑓(𝜇)𝑒45!(046!)"! 	∫ 𝑒5!(746!)"!𝑑𝜈	0!
	0 ,     𝛾" ≤ 𝑡 ≤ 𝑡",            (2.3) 

respectively. Using the continuity of 𝐼"(𝑡) at time 𝑡 = 𝜇 and 𝑡 = 𝛾", from (2.1)-(2.3), we 
have  

      𝑆 = 𝑊 +	∫ 	𝑓(𝑡)𝑑𝑡	3
	- 	+ 𝑓(𝜇)(𝛾" − 𝜇) + 𝑓(𝜇) ∫ 	𝑒5!(046!)"!𝑑𝑡	0!

	6!
.        (3) 

The amounts of deteriorated items in RW is    

𝑓(𝜇)∫ (	𝑒5!(046!)"! − 1)𝑑𝑡	0!
	6!

.                           (4) 

Thus, the cumulative inventory in RW during (0, 𝑡")  is ∫ 𝐼"(𝑡)𝑑𝑡
	0!
	- . Therefore, 

𝐶&'##(0, 𝑡") = 𝑐8" ∫ 𝑒4"0𝐼"(𝑡)𝑑𝑡
	0!
	-  

=	𝑐8"

⎩
⎪
⎨

⎪
⎧ ∫ 𝑒4"03

- G𝑆 −𝑊 −	∫ 	𝑓(𝜈)𝑑𝜈	0
	- H 𝑑𝑡

+∫ 𝑒4"0I𝑆 −𝑊 −	∫ 𝑓(𝑡)𝑑𝑡 − 𝑓(𝜇)	3

	0
	(𝑡 − 𝜇)J𝑑𝑡	6!

	3

+𝑓(𝜇) ∫ 𝑒4"0𝑒45!(046!)"! 	∫ 𝑒5!(746!)"!𝑑𝜈	0!
	0 𝑑𝑡				0!

	6! ⎭
⎪
⎬

⎪
⎫

.                    (5) 

And  

𝐶('##(𝛾" , 𝑡") = 𝑐!𝑓(𝜇) ∫ 𝑒4"0 G	𝑒5!(046!)"! − 1H𝑑𝑡	0!
	6!

.                       (6) 

Case 2. 𝜇 ≥ 𝛾" 

There is no deterioration, and the inventory gradually decreases due to demand in the 
(0, 𝛾"), where 0 ≤ 𝑡 ≤ 𝛾", after the deterioration point 𝛾", the item begins to deteriorate, and 
the inventory also gradually decreases due to demand in (	𝛾" , 𝜇) , where 𝛾" ≤ 𝑡 ≤ 𝜇 . The 
inventory level at time t is governed by the following differential equation: 

      !.!(0)
!0

= −𝑓(𝑡),                       0 ≤ 𝑡 ≤ 𝛾",          (7.1) 
!.!(0)
!0

= −𝑓(𝑡) − 𝑍"(𝑡)	𝐼"(𝑡),                 𝛾" ≤ 𝑡 ≤ 𝜇,          (7.2) 
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with the boundary condition 𝐼"(0) = 𝑆 −𝑊. During (𝜇, 𝑡"), the inventory depletes due to 
both constant demand and deterioration and it vanishes at 𝑡 = 𝑡", it satisfies the following 
differential equation: 

!.!(0)
!0

= −𝑓(𝜇) − 𝑍"(𝑡)	𝐼"(𝑡),																         𝜇 ≤ 𝑡 ≤ 𝑡",          (7.3) 

with the boundary condition 𝐼"(𝑡") = 0. The solutions to (7.1)-(7.3) are as follows. 

𝐼"(𝑡) = 𝑆 −𝑊 −	∫ 	𝑓(𝜈)𝑑𝜈	0
	- ,                0 ≤ 𝑡 ≤ 𝛾",          (8.1) 

𝐼"(𝑡) = 𝑆 −𝑊 −	O 	𝑓(𝜈)𝑑𝜈
	6!

	-
	− O 𝑒5!(046!)"!𝑓(𝑡)𝑑𝑡

	3

	6!
+ 

															𝑒45!(046!)"! 	∫ 𝑒5!(746!)"!𝑓(𝜈)𝑑𝜈	3
	0 ,    𝛾" ≤ 𝑡 ≤ 𝜇,              (8.2) 

and 

𝐼"(𝑡) = 𝑓(𝜇)𝑒45!(046!)"! 	∫ 𝑒5!(746!)"!𝑑𝜈	0!
	0 ,              b    𝜇 ≤ 𝑡 ≤ 𝑡",          (8.3) 

respectively. Using the continuity of 𝐼"(𝑡) at time 𝑡 = 𝛾" and 𝑡 = 𝜇, from (8.1)- (8.3), we 
have  

𝑆 = 𝑊 +	∫ 	𝑓(𝑡)𝑑𝑡	6!
	- 	+ ∫ 	𝑒5!(046!)"!𝑓(𝑡)𝑑𝑡	3

	6!
+ 𝑓(𝜇) ∫ 	𝑒5!(046!)"!𝑑𝑡	0!

	3 .           (9) 

The amount of the deteriorated items in RW is  

∫ (	𝑒5!(046!)"! − 1)𝑓(𝑡)𝑑𝑡	3
	6!

+ 𝑓(𝜇)∫ (	𝑒5!(046!)"! − 1)𝑑𝑡	0!
	3 .              (10) 

Therefore,  

𝐶&'#$(0, 𝑡") = 𝑐8"O 𝑒4"0𝐼"(𝑡)𝑑𝑡
	0!

	-
	 

=	𝑐!"

⎩
⎪
⎨

⎪
⎧ ∫ 𝑒#"$ *𝑆 −𝑊 −	∫ 	𝑓(𝜈)𝑑𝜈	$

	& 3𝑑𝑡	'!	
	&

+∫ 𝑒#"$ 6𝑆 −𝑊 − ∫ 𝑓(𝑡)𝑑𝑡 −	'!
	0

∫ 𝑒)!($#'!)"!𝑓(𝑡)𝑑𝑡	,
	'!

+ 𝑒#)!($#'!)"! 	∫ 𝑒)!(-#'!)"!𝑓(𝜈)𝑑𝜈	,
	$ 7	,

	'!
𝑑𝑡

+𝑓(𝜇) ∫ 𝑒#"$𝑒#)!($#'!)"! 	∫ 𝑒)!(-#'!)"!𝑑𝜈	$!
	$ 𝑑𝑡	$!

	, ⎭
⎪
⎬

⎪
⎫
. (11) 

And  

𝐶('#$(𝛾" , 𝑡") 

= 𝑐! P∫ 𝑒4"0 G𝑒5!(046!)"! − 1H𝑓(𝑡)𝑑𝑡 + 𝑓(𝜇)∫ 𝑒4"0 G𝑒5!(046!)"! − 1H𝑑𝑡	0!
	3

	3
	6!

Q.                (12) 

 

Next, we discuss the model formulated in owned warehouse. 

3.1.2 The model was formulated in own warehouse  

Case 1. 𝛾# ≤ 𝑡", the deterioration starts before the inventory level of RW becomes zero. In this 
case, there is no change in (0, 𝛾#), the inventory level is as follows. 

𝐼#(𝑡) = 𝑊,                      0 ≤ 𝑡 ≤ 𝛾#.                (13.1) 

In (𝛾#, 𝑡"), the inventory decreases due to deterioration only; the differential equation is 
!.%(0)
!0

= −𝑍#(𝑡)	𝐼#(𝑡),                 𝛾# ≤ 𝑡 ≤ 𝑡",                (13.2) 
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 with the initial condition 𝐼#(𝛾#) = 𝑊. After time 𝑡#, the inventory level depletes due to 
both deterioration and constant demand, the differential equation is 

!.%(0)
!0

= −𝑓(𝜇) − 𝑍#(𝑡)	𝐼#(𝑡),            𝑡" ≤ 𝑡 ≤ 𝑡#                (13.3) 

with the initial condition 𝐼#(𝑡#) = 0. The solutions to (13.1)-(13.3) are as follows. 

𝐼#(𝑡) = 𝑊𝑒45%(046%)"% ,                𝛾# ≤ 𝑡 ≤ 𝑡",               (14.1) 

and 

 𝐼#(𝑡) = 𝑓(𝜇)𝑒45%(046%)"% 	∫ 𝑒5%(746%)"%𝑑𝜈	0%
	0 ,    𝑡" ≤ 𝑡 ≤ 𝑡#,               (14.2) 

respectively. Using the continuity of 𝐼#(𝑡) at time 𝑡 = 𝑡", from (14.1) and (14.2), we have  

             𝑊 = 𝑓(𝜇) ∫ 	𝑒5%(046%)"%𝑑𝑡	0%
	0!

                         (15) 

The amount of the deteriorated items in OW is  

𝑓(𝜇)∫ G𝑒5%(746%)"% − 1H𝑑𝜈	0%
	0! 		.                      (16) 

Thus, the cumulative inventory in OW during (0, 𝑡#) is ∫ 𝐼#	(𝑡)𝑑𝑡
	0%
	- . Therefore,  

𝐶&)##(0, 𝑡#) = 𝑐8#O 𝑒4"0𝐼#(𝑡)𝑑𝑡
	0%

	-
 

														= 𝑐8# R
∫ 𝑊6%
- 𝑒4"0𝑑𝑡 + ∫ 𝑊𝑒4"0𝑒45%(046%)"%	0!

	6%
𝑑𝑡

+		𝑓(𝜇) ∫ 𝑒4"	0𝑒45%(046%)"% 	∫ 𝑒5%(746%)"%𝑑𝜈	𝑑𝑡	0%
	0 		0%

	0!

S.                    (17) 

And 

	𝐶()##(𝛾#, 𝑡#) = 𝑐!𝑓(𝜇)∫ 𝑒4"0 G𝑒5%(046%)"% − 1H𝑑𝑡	0%
	0!

.	                         (18) 

 

Case 2. 𝑡" ≤ 𝛾# < 𝑡#, the deterioration starts after the inventory level of RW becomes zero. In 
this case, there is no change in (0, 𝑡"), the inventory level is as follows. 

𝐼#(𝑡) = 𝑊,                         0 ≤ 𝑡 ≤ 𝑡".         (19.1) 

In (𝑡" , 𝛾#), the inventory decreases due to constant demand only, the differential equation 
is 

!.%(0)
!0

= −𝑓(𝜇),                       𝑡" ≤ 𝑡 ≤ 𝛾# ,       (19.2) 

with the initial condition 𝐼#(𝑡") = 𝑊. After time 𝛾#, the inventory level depletes due to 
both deterioration and constant demand, the differential equation is 

!.%(0)
!0

= −𝑓(𝜇) − 𝑍#(𝑡)	𝐼#(𝑡),                𝛾# ≤ 𝑡 ≤ 𝑡#,       (19.3) 

with the initial condition 𝐼#(𝑡#) = 0. The solutions to (19.1)-(19.3) are as follows. 

𝐼#(𝑡) = 𝑊 − 𝑓(𝜇)(𝑡 − 𝑡"),                 𝑡" ≤ 𝑡 ≤ 𝛾#,       (20.1) 

and 
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        𝐼#(𝑡) = 𝑓(𝜇)𝑒45%(046%)"% 	∫ 𝑒5%(746%)"%𝑑𝜈	0%
	0 ,       𝛾# ≤ 𝑡 ≤ 𝑡#,       (20.2) 

respectively. Using the continuity of 𝐼#(𝑡) at time 𝑡 = 𝛾#, from (20.1) and (20.2), we have  

𝑊 = 	𝑓(𝜇) P(𝛾# − 𝑡") 	+ ∫ 	𝑒5%(046%)"%𝑑𝑡	0%
	6%

Q.                (21) 

The amount of the deteriorated items in OW is  

	𝑓(𝜇) ∫ G𝑒5%(046%)"% − 1H𝑑𝑡	0%
	6%

.                      (22) 

Therefore, 

								𝐶&)#$(0, 𝑡#) = 𝑐8#O 𝑒4"0𝐼#(𝑡)𝑑𝑡
	0%

	-
	 

   		= 𝑐8# R
∫ 𝑊𝑒4"0𝑑𝑡	0!
	- + ∫ 𝑒4"0[𝑊 − 𝑓(𝜇)(𝑡 − 𝑡")]𝑑𝑡

	6%
	0!

+𝑓(𝜇)∫ 𝑒4"	0𝑒45%(046%)"% 	∫ 𝑒5%(746%)"%𝑑𝜈	𝑑𝑡	0%
	0

	0%
	6%

S.                  (23) 

And  

𝐶()#$(𝛾#, 𝑡#) = 𝑐!𝑓(𝜇)∫ 	𝑒4"0 G𝑒5%(046%)"% − 1H𝑑𝑡	0%
	6%

.                               (24) 

   

By the time 𝑡#, both warehouses are empty, and after that, shortages are allowed to occur. 
The partially backordered quantity is supplied to customers at the beginning of the next cycle. 
By the time , the replenishment cycle restarts. During the interval (𝑡#, 𝑇), the backlogged 
level B(t) at time t in OW is governed by the following differential equation: 

              !*(0)
!0

= 𝛿(𝑇 − 𝑡)𝑓(𝜇),										        𝑡# ≤ 𝑡 ≤ 𝑇,                  (25) 

with the boundary condition B( ) = 0. The solution to (25) is 

𝐵(𝑡) = 𝑓(𝜇) ∫ 𝛿(𝑇 − 𝜈)𝑑𝜈	0
	0%

,          𝑡# ≤ 𝑡 ≤ 𝑇.                  (26) 

The number of lost sales at time t is  

𝐿(𝑡) = 𝑓(𝜇)∫ [1 − 𝛿(𝑇 − 𝜈)]𝑑𝜈	0
	0%

,        𝑡# ≤ 𝑡 ≤ 𝑇.                 (27) 

Thus,  

𝐶*(𝑡#, 𝑇) = 𝑐:𝑓(𝜇)∫ 𝑒4"0	;
	0%

∫ 𝛿(𝑇 − 𝜈)𝑑𝜈	0
	0%

	𝑑𝑡  

																		= <&
"
𝑓(𝜇)	∫ (𝑒4"0 − 𝑒4";)	;

	0%
	𝛿(𝑇 − 𝑡)𝑑,                                   (28) 

and  

𝐶+(𝑡#, 𝑇) = 𝑐=𝑓(𝜇)∫ 𝑒4"0[1 − 𝛿(𝑇 − 𝑡)]𝑑𝑡	;
	0%

,                                      (29) 

respectively. In summary, the four cases of the present value of the total relevant cost per 
unit time for the research model during the cycle [0, 𝑇] are given by 

 

 

T 

ot
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Total relevant cost = ordering cost + holding cost in RW + holding cost in OW + 
deteriorated items cost in RW+ deteriorated items cost in OW + backlogging cost + lost sales 
cost. i.e., 

𝑇𝐶$1(𝑡" , 𝑡#, 𝑇) = [𝑐# + 𝐶&'##(0, 𝑡") + 𝐶&)##(0, 𝑡#) + 𝐶('##(𝛾" , 𝑡") + 𝐶()##(𝛾#, 𝑡#) 

+𝐶*(𝑡#, 𝑇) + 𝐶+(𝑡#, 𝑇)]/𝑇,   if  𝑚𝑖𝑛( 𝜇, 𝛾") = 𝜇 and 𝑚𝑖𝑛( 𝛾#, 𝑡") = 𝛾#,             (30a) 

𝑇𝐶
12
(𝑡" , 𝑡#, 𝑇) = [𝑐# + 𝐶&'##(0, 𝑡") + 𝐶&)#$(0, 𝑡#) + 𝐶('##(𝛾" , 𝑡") + 𝐶()#$(𝛾#, 𝑡#) 

+𝐶*(𝑡#, 𝑇) + 𝐶+(𝑡#, 𝑇)]/𝑇,   if  𝑚𝑖𝑛( 𝜇, 𝛾") = 𝜇 and 𝑚𝑖𝑛( 𝛾#, 𝑡") = 𝑡",             (30b) 

𝑇𝐶$@(𝑡" , 𝑡#, 𝑇) = [𝑐# + 𝐶&'#$(0, 𝑡") + 𝐶&)##(0, 𝑡#) + 𝐶('#$(𝛾" , 𝑡") + 𝐶()##(𝛾#, 𝑡#) 

+𝐶*(𝑡#, 𝑇) + 𝐶+(𝑡#, 𝑇)]/𝑇,   if  𝑚𝑖𝑛( 𝜇, 𝛾") = 𝛾" and 𝑚𝑖𝑛( 𝛾#, 𝑡") = 𝛾#,             (30c) 

𝑇𝐶
14
(𝑡" , 𝑡#, 𝑇) = [𝑐# + 𝐶&'#$(0, 𝑡") + 𝐶&)#$(0, 𝑡#) + 𝐶('#$(𝛾" , 𝑡") + 𝐶()#$(𝛾#, 𝑡#) 

+𝐶*(𝑡#, 𝑇) + 𝐶+(𝑡#, 𝑇)]/𝑇,   if  𝑚𝑖𝑛( 𝜇, 𝛾") = 𝛾" and 𝑚𝑖𝑛( 𝛾#, 𝑡") = 𝑡",             (30d) 

3.2 Part 2: 𝝁 ≥ 𝒕𝒓 

In RW, during (0, 𝑡"), there is only one case to be discussed. However, in OW, during the 
(0, 𝑡#), depending on the relation among 𝛾#, 	𝑡", and 𝜇, there are three cases to be considered, 
(i) 𝛾# ≤ 𝑡"  (ii) 𝑡" ≤ 𝜇 ≤ 𝛾#  and (iii) 𝑡" ≤ 𝛾# ≤ 𝜇 . Similarly, we also first discuss the model 
formulated in rented warehouse. 

Fig 6. Graphical Representation of The Research Model (where 𝜇 ≥ 𝑡" and 𝛾- ≤ 𝑡") 
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Fig 7. Graphical Representation of The Research Model (where  𝑡" ≤ 𝜇 ≤ 𝛾-) 

Fig 8. Graphical Representation of The Research Model (where 𝑡" ≤ 𝛾- ≤ 𝜇) 

 

3.2.1. The model was formulated in rented warehouse. 

In this case, the demand rate in RW is increasing with time. During (0, 𝛾"), there is no 
deterioration, and the inventory gradually decreases due to demand, where 0	 < 𝑡 ≤ 𝛾".  

The inventory level at time t is governed by the following differential equation: 

      !.!(0)
!0

= −𝑓(𝑡),                   0 ≤ 𝑡 ≤ 𝛾",             (31.1)  
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with the boundary condition 𝐼"(0) = 𝑆 −𝑊. During (𝛾" , 𝑡"), the inventory depletes due to 
both demand and deterioration, and it vanishes at 𝑡 = 𝑡", it satisfies the following differential 
equation: 

!.!(0)
!0

= −𝑓(𝑡) − 𝑍"(𝑡)	𝐼"(𝑡),              𝛾" ≤ 𝑡 ≤ 𝑡",             (31.2) 

with the boundary condition 𝐼"(𝑡") = 0. The solutions to (31.1) and (31.2) are as follows. 

𝐼"(𝑡) = 𝑆 −𝑊 −	∫ 	𝑓(𝜈)𝑑𝜈	0
	- ,            0 ≤ 𝑡 ≤ 𝛾",             (32.1) 

and 

𝐼"(𝑡) = 𝑒45!(046!)"! 	∫ 𝑒5!(746!)"!𝑓(𝜈)𝑑𝜈	0!
	0 ,       𝛾" ≤ 𝑡 ≤ 𝑡",            (32.2) 

respectively. Using the continuity of 𝐼"(𝑡) at time 𝑡 = 𝛾", from (32.1) and (32.2), we have  

            𝑆 = 𝑊 +	∫ 	𝑓(𝑡)𝑑𝑡	6!
	- 	+ ∫ 	𝑒5!(046!)"!𝑓(𝑡)𝑑𝑡	0!

	6!
.                   (33) 

The amount of the deteriorated items in RW is  

∫ 	(𝑒5!(046!)"! − 1)𝑓(𝑡)𝑑𝑡	0!
	6!

.                            (34) 

Therefore,  

								𝐶&'(0, 𝑡") = 𝑐8"O 𝑒4"0𝐼"(𝑡)𝑑𝑡
	0!

	-
 

																		= 	 𝑐8" R
∫ 𝑒4"0 G𝑆 −𝑊 −	∫ 	𝑓(𝜈)𝑑𝜈	0

	- H 𝑑𝑡	6!
	-

+∫ 𝑒4"0𝑒45!(046!)"! 	∫ 𝑒5!(746!)"!𝑓(𝜈)𝑑𝜈	0!
	0 𝑑𝑡	0!

	6!

S.                     (35) 

And  

𝐶('(𝛾" , 𝑡") = 𝑐! ∫ 	𝑒4"0 G𝑒5!(046!)"! − 1H𝑓(𝑡)𝑑𝑡	0!
	6!

.                                  (36) 

3.2.2 The model was formulated in own warehouse. 

In OW, during (0, 𝑡#), depending on the relation between 𝛾# and 𝑡", there are three cases 
to be considered, (i) 𝛾# ≤ 𝑡", (ii) 𝑡" ≤ 𝜇 ≤ 𝛾# and (iii) 𝑡" ≤ 𝛾# ≤ 𝜇.   

Case 1.	𝛾# ≤ 𝑡", the deterioration starts before the inventory level of RW becomes zero. In this 
case, there is no change in (0, 𝛾#), the inventory level is as follows. 

𝐼#(𝑡) = 𝑊,                     0 ≤ 𝑡 ≤ 𝛾#.            (37.1) 

In (𝛾#, 𝑡"), the inventory decreases due to deterioration only, the differential equation is 
!.%(0)
!0

= −𝑍#(𝑡)	𝐼#(𝑡),                 𝛾# ≤ 𝑡 ≤ 𝑡",            (37.2) 

with the initial condition 𝐼#(𝛾#) = 𝑊. After time 𝑡", the inventory level depletes due to 
both deterioration and demand, the differential equation is 

!.%(0)
!0

= −𝑓(𝑡) − 𝑍#(𝑡)	𝐼#(𝑡),               𝑡" ≤ 𝑡 ≤ 𝜇,            (37.3) 
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!.%(0)
!0

= −𝑓(𝜇) − 𝑍#(𝑡)	𝐼#(𝑡),               𝜇 ≤ 𝑡 ≤ 𝑡#,            (37.4) 

with the initial condition 𝐼#(𝑡#) = 0. The solutions to (37.2)-(37.4) are as follows. 

𝐼#(𝑡) = 𝑊𝑒45%(046%)"% ,                  𝛾# ≤ 𝑡 ≤ 𝑡",           (38.1) 

𝐼#(𝑡) = 𝑒45%(0!46%)"% ]𝑊 −O 𝑒5%(046%)"%𝑓(𝑡)𝑑𝑡
	3

	0!
^ + 

																																				𝑒45%(046%)"% 	∫ 𝑒5%(746%)"%𝑓(𝜈)𝑑𝜈	3
	0 ,        𝑡" ≤ 𝑡 ≤ 𝜇,           (38.2) 

𝐼#(𝑡) = 𝑓(𝜇)𝑒45%(046%)"% 	∫ 𝑒5%(746%)"%𝑑𝜈	0%
	0 ,     𝜇 ≤ 𝑡 ≤ 𝑡#,           (38.3) 

respectively. Using the continuity of 𝐼#(𝑡) at time 𝑡 = 𝜇, from (38.2) and (38.3), we have  

𝑊 = ∫ 	𝑒5%(046%)"%𝑓(𝑡)𝑑𝑡	3
	0!

+ 𝑓(𝜇)𝑒5%(0!46%)"%𝑒45%(346%)"% ∫ 	𝑒5%(046%)"%𝑑𝑡	0%
	3 .        (39) 

The amounts of the deteriorated items in OW is  

∫ 	G𝑒5%(046%)"% − 1H𝑓(𝑡)𝑑𝑡	3
	0!

+ 𝑓(𝜇) ∫ 	G𝑒5%(046%)"% − 1H𝑑𝑡	0%
	3 .            (40) 

Therefore, 

𝐶&)#(0, 𝑡#) = 𝑐8# ∫ 𝑒4"0𝐼#(𝑡)𝑑𝑡
	0%
	- =

𝑐8#

⎩
⎪
⎨

⎪
⎧ ∫ 𝑊𝑒4"0𝑑𝑡 + ∫ 𝑊𝑒4"0𝑒45%(046%)"%	0!

	6%
𝑑𝑡	6%

	-

+∫ 𝑒4"0	3
	0!

P𝑒45%(0!46%)"% G𝑊 − ∫ 𝑒5%(046%)"%𝑓(𝑡)𝑑𝑡	3
	0!

H + 𝑒45%(046%)"% 	∫ 𝑒5%(746%)"%𝑓(𝜈)𝑑𝜈	3
	0 Q 𝑑𝑡

+𝑓(𝜇) ∫ 𝑒4"	0𝑒45%(046%)"% 	∫ 𝑒5%(746%)"%𝑑𝜈	𝑑𝑡	0%
	0 		0%

	3 ⎭
⎪
⎬

⎪
⎫
.  

  (41) 

And  

𝐶()#(𝛾#, 𝑡#) 

= 𝑐! P∫ 𝑒4"0 G𝑒5%(046%)"% − 1H𝑓(𝑡)𝑑𝑡3
	0!

+𝑓(𝜇)∫ 𝑒4"0 G𝑒5%(046%)"% − 1H𝑑𝑡	0%
	3 Q.                (42) 

 

Case 2. 𝑡" ≤ 𝜇 ≤ 𝛾#, the deterioration starts after the inventory level of RW becomes zero. In 
this case, there is no change in (0, 𝑡"); the inventory level is as follows. 

𝐼#(𝑡) = 𝑊,                        0 ≤ 𝑡 ≤ 𝑡".             (43) 

In (𝑡" , 𝜇), the inventory decreases due to demand only; the differential equation is 
!.%(0)
!0

= −𝑓(𝑡),                        𝑡" ≤ 𝑡 ≤ 𝜇 ,          (44.1) 

with the initial condition 𝐼#(𝑡") = 𝑊. After the time 𝜇, the inventory level depletes due to 
the constant demand only, the differential equation is  

!.%(0)
!0

= −𝑓(𝜇),                       𝜇 ≤ 𝑡 ≤ 𝛾# ,          (44.2) 

and after the time 𝛾#, the inventory level depletes due to both deterioration and constant 
demand, the differential equations are 



AN OPTIMAL POLICY FOR WEIBULL DISTRIBUTION OF DETERIORATING ITEMS  
WITH BACKLOGGING AND RAMP-TYPE DEMAND UNDER INFLATION 

 

315 

!.%(0)
!0

= −𝑓(𝜇) − 𝑍#(𝑡)	𝐼#(𝑡),                𝛾# ≤ 𝑡 ≤ 𝑡#,          (44.3) 

with the initial condition 𝐼#(𝑡#) = 0. The solutions to (44.1) - (44.3) are as follows. 

𝐼#(𝑡) = 𝑊 −	∫ 	𝑓(𝜈)𝑑𝜈	0
	0!

,                  𝑡" ≤ 𝑡 ≤ 𝜇,           (45.1) 

𝐼#(𝑡) = 𝑊 −	∫ 	𝑓(𝑡)𝑑𝑡	3
	0!

	− 𝑓(𝜇)(𝑡 − 𝜇),             𝜇 ≤ 𝑡 ≤ 𝛾#,           (45.2) 

and 

  𝐼#(𝑡) = 𝑓(𝜇)𝑒45%(046%)"% 	∫ 𝑒5%(746%)"%𝑑𝜈	0%
	0 ,           𝛾# ≤ 𝑡 ≤ 𝑡#,          (45.3) 

respectively. Using the continuity of  at time 𝑡 = 𝛾#, from (45.2) and (45.3), we have  

𝑊 =	∫ 	𝑓(𝑡)𝑑𝑡	3
	0!

	+ 𝑓(𝜇) P(𝛾# − 𝜇) + ∫ 	𝑒5%(046%)"%𝑑𝑡	0%
	6%

Q.            (46) 

The amounts of deteriorated items in OW is 

𝑓(𝜇) ∫ 	(𝑒5%(046%)"% − 1)𝑑𝑡	0%
	6%

.                      (47) 

Therefore,  

									𝐶&)$(0, 𝑡#) = 𝑐8#O 𝑒4"0𝐼#(𝑡)𝑑𝑡
	0%

	-
= 

𝑐8#

⎣
⎢
⎢
⎢
⎡ ∫ 𝑊𝑒4"0	0!

- 𝑑𝑡 + ∫ 𝑒4"0 G𝑊 − ∫ 𝑓(𝜈)	0
	0!

𝑑𝜈H𝑑𝑡	3
	0!

+∫ 𝑒4"0	6%
	3 b𝑊 −	∫ 	𝑓(𝑡)𝑑𝑡	3

	0!
	− 𝑓(𝜇)(𝑡 − 𝜇)c 𝑑𝑡

+𝑓(𝜇)∫ 𝑒4"	0𝑒45%(046%)"% 	∫ 𝑒5%(746%)"%𝑑𝜈	𝑑𝑡	0%
	0

	0%
	6% ⎦

⎥
⎥
⎥
⎤

	.											 											                  (48) 

And  

𝐶()$(𝑡" , 𝑡#) = 𝑐!𝑓(𝜇)∫ 𝑒4"0 G𝑒5%(046%)"% − 1H𝑑𝑡	0%
	6%

.                                (49) 

 

Case 3. 𝑡" ≤ 𝛾# ≤ 𝜇 

In  (𝑡" , 𝛾#), the inventory decreases due to demand only; the differential equation is 
!.%(0)
!0

= −𝑓(𝑡),               𝑡" ≤ 𝑡 ≤ 𝛾# ,               (50.1) 

with the initial condition 𝐼#(𝑡") = 𝑊. After the time 𝛾#, the inventory level depletes due 
to both deterioration and demand, the differential equation is 

!.%(0)
!0

= −𝑓(𝑡) − 𝑍#(𝑡)	𝐼#(𝑡),        𝛾# ≤ 𝑡 ≤ 𝜇 ,               (50.2) 

And after the time 𝜇, the inventory level depletes due to both deterioration and constant 
demand, the differential equation is 

!.%(0)
!0

= −𝑓(𝜇) − 𝑍#(𝑡)	𝐼#(𝑡),        𝜇 ≤ 𝑡 ≤ 𝑡#,                (50.3) 

with the initial condition 𝐼#(𝑡#) = 0. The solutions to (50.1)-(50.3) are as follows. 

𝐼#(𝑡) = 𝑊 −	∫ 	𝑓(𝜈)𝑑𝜈	0
	0!

,         𝑡" ≤ 𝑡 ≤ 𝛾#,                (51.1) 

 

)(tI o
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												𝐼#(𝑡) = 𝑊 −	O 	𝑓(𝜈)𝑑𝜈
	6%

	0!
	− 

	∫ 𝑒5%(046%)"%𝑓(𝑡)𝑑𝑡 +	3
	6%

𝑒45%(046%)"% 	∫ 𝑒5%(746%)"%𝑓(𝜈)𝑑𝜈	3
	0 ,      𝛾# ≤ 𝑡 ≤ 𝜇,        (51.2) 

and 

𝐼#(𝑡) = 𝑓(𝜇)𝑒45%(046%)"% 	∫ 𝑒5%(746%)"%𝑑𝜈	0%
	0 ,                   𝜇 ≤ 𝑡 ≤ 𝑡#,         

(51.3) 

respectively. Using the continuity of 𝐼#(𝑡) at time 𝑡 = 𝜇, from (51.2) and (51.3), we have  

𝑊 =	∫ 	𝑓(𝑡)𝑑𝑡	6%
	0!

	+ ∫ 	𝑒5%(046%)"%𝑓(𝑡)𝑑𝑡	3
	6%

+ 𝑓(𝜇)𝑒45%(346%)"% ∫ 	𝑒5%(046%)"%𝑑𝑡	0%
	3 .        

(52) 

The amounts of deteriorated items in OW is 

∫ 	G𝑒5%(046%)"% − 1H 𝑓(𝑡)𝑑𝑡	3
	6%

+ 𝑓(𝜇) ∫ G𝑒5%(046%)"% − 1H𝑑𝑡	0%
	3 .                        (53) 

Therefore, 

𝐶&)'(0, 𝑡#) = 𝑐8#O 𝑒4"0𝐼#(𝑡)𝑑𝑡
	0%

	-
 

= 𝑐!.

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ? 𝑊𝑒#"$𝑑𝑡 +

	$!

	&
? 𝑒#"$ @𝑊 −? 𝑓(𝜈)

	$

	$!
𝑑𝜈A𝑑𝑡

	'#

	$!

+? 𝑒#"$ @𝑊 −? 𝑓(𝜈)𝑑𝜈
'#

$!
−? 𝑒)#(-#'#)"#𝑓(𝑡)𝑑𝑡 +

	,

	'#
𝑒#)#($#'#)"# 	? 𝑒)#(-#'#)"#𝑓(𝜈)𝑑𝜈

	,

	$
A𝑑𝑡

,

'#

+𝑓(𝜇)? 𝑒#"	$𝑒#)#($#'#)"# 	? 𝑒)#(-#'#)"#𝑑𝜈	𝑑𝑡
	$#

	$

	$#

	, ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.		 

(54) 

And  

𝐶()'(𝑡" , 𝑡#) 

= 𝑐! P∫ 	𝑒4"0 G𝑒5%(046%)"% − 1H𝑓(𝑡)𝑑𝑡 + 𝑓(𝜇) ∫ 𝑒4"0 G𝑒5%(046%)"% − 1H𝑑𝑡	0%
	3

	3
	6%

Q.              (55) 

 

Consequently, the following are the three cases of the present value of the total relevant 
cost per unit time for the research model during the cycle [0, 𝑇]. 

𝑇𝐶B%(𝑡" , 𝑡#, 𝑇) = [𝑐# + 𝐶&'(0, 𝑡") + 𝐶&)((0, 𝑡#) + 𝐶('(𝛾" , 𝑡") + 𝐶()((𝛾#, 𝑡#) 

+𝐶*(𝑡#, 𝑇) + 𝐶+(𝑡#, 𝑇)]/𝑇,   for 𝑖 = 1, 2, 3,             (56a-56c) 

where 𝐶*(𝑡#, 𝑇) and 		𝐶+(𝑡#, 𝑇) are the same as Equations (28) and (29). The objective of 
all the proposed models is to determine the time points 𝑡", 𝑡#,	 𝑇 so that the total relevant 
cost per unit time of the inventory system is minimized.  
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4. Solutions to the research models 

4.1 Part 1: 𝝁 ≤ 𝒕𝒓 

From (15) and (21), we know that 𝑡- is a function of 𝑡" . Thus, 𝑇𝐶$%(𝑡" , 𝑡#, 𝑇) can be 
reduced to be a function of 𝑡" and 𝛥B, denoted by 𝑇𝐶$%(𝑡" , 𝛥B), where  𝛥B = 𝑇 − 𝑡# and 𝛥$ =
𝑡# − 𝑡", i =1, 2, 3, 4. 

4.1.1 The case of  𝝁 ≤ 𝜸𝒓 

The necessary conditions for 𝑇𝐶$%(𝑡" , 𝛥B) in (30a) and (30b) to be minimized can be written 
as follows, for i = 1, 2. 

𝜕𝑇𝐶$$
𝜕𝑡"

(𝑡" + 𝛥$ + 𝛥B) 

= 𝑓(𝜇) l
𝑐8"𝑒5!(0!46!)

"! O 𝑒4"0𝑒45!(046!)"!𝑑𝑡
	0!

	6!

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H − 𝑐!𝑒4"0! G𝑒5%(0!46%)

"% − 1H
m 

+b1 +
𝑑𝛥$
𝑑𝑡"

c 𝑓(𝜇)

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

l
𝑐8#𝑒5%(0%46%)

"% O 𝑒4"0𝑒45%(046%)"%𝑑𝑡
	0%

	0!

+𝑐!𝑒4"0% G𝑒5%(0%46%)
"% − 1H

m

−𝑒4"0% P
𝑐:
𝑟 o1 − 𝑒

4"(;40%)p𝛿(𝑇 − 𝑡#) + 𝑐=o1 − 𝛿(𝑇 − 𝑡#)pQ

+𝑒4";O P𝑐:𝛿(𝑇 − 𝑡) + G
𝑐:
𝑟 (𝑒

"(;40) − 1) − 𝑐=𝑒"(;40)H 𝛿′(𝑇 − 𝑡)Q 𝑑𝑡
	;

	0%
		
⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 

−𝑇𝐶$$(1 +
!C#
!0!
) =0,                                                        (57a) 

𝜕𝑇𝐶$B
𝜕𝑡"

(𝑡" + 𝛥$ + 𝛥B) 

= 𝑓(𝜇)

⎣
⎢
⎢
⎡ 𝑐8"𝑒5!(0!46!)

"! O 𝑒4"0𝑒45!(046!)"!𝑑𝑡
	0!

	6!

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H +

𝑐8#
𝑟
(𝑒4"0! − 𝑒4"6%)⎦

⎥
⎥
⎤
 

+b1 +
𝑑𝛥$
𝑑𝑡"

c 𝑓(𝜇)

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

l
𝑐8#𝑒5%(0%46%)

"% O 𝑒4"0𝑒45%(046%)"%𝑑𝑡
	0%

	0!

+𝑐!𝑒4"0% G𝑒5%(0%46%)
"% − 1H

m

−𝑒4"0% P
𝑐:
𝑟 o1 − 𝑒

4"(;40%)p𝛿(𝑇 − 𝑡#) + 𝑐=o1 − 𝛿(𝑇 − 𝑡#)pQ

+𝑒4";O P𝑐:𝛿(𝑇 − 𝑡) + G
𝑐:
𝑟 (𝑒

"(;40) − 1) − 𝑐=𝑒"(;40)H 𝛿′(𝑇 − 𝑡)Q 𝑑𝑡
	;

	0%
		
⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫
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−𝑇𝐶$B(1 +
!C#
!0!
) =0,                                                         (57b) 

 and 

𝜕𝑇𝐶$%
𝜕𝛥B

(𝑡" + 𝛥$ + 𝛥B) 

= 𝑒4";𝑓(𝜇)O P𝑐:𝛿(𝑇 − 𝑡) + G
𝑐:
𝑟 (𝑒

"(;40) − 1) − 𝑐=𝑒"(;40)H 𝛿′(𝑇 − 𝑡)Q 𝑑𝑡
	;

	0%
− 𝑇𝐶$% 

= 0,                                              i =1, 2, 3, 4.               (58) 

From (15) and (21), we have 

        1 + !C#
!0!

= 𝑒45%[(0%46%)"%4(0!46%)"%],         if 𝛾# ≤ 𝑡",                 (59a) 

           1 + !C#
!0!

= 𝑒45%(0%46%)"%                  if 𝛾# ≥ 𝑡".                 (59b) 

Thus, from (57a), (58) and (59a), (57b), (58) and (59b), the following results can be 
obtained. 
𝑐:
𝑟
[(1 − 𝑒4"C$)𝛿(𝛥B) + 𝑐=(1 − 𝛿(𝛥B))] 

= 𝑒5%[(0%46%)"%4(0!46%)"%]𝑒"0% l
𝑐8"𝑒5!(0!46!)

"! O 𝑒4"0𝑒45!(046!)"!𝑑𝑡
	0!

	6!

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H − 𝑐!𝑒4"0! G𝑒5%(0!46%)

"% − 1H
m 

+𝑒"0% P𝑐8#𝑒5%(0%46%)
"% ∫ 𝑒4"0𝑒45%(046%)"%𝑑𝑡	0%

	0!
+𝑐!𝑒4"0% G𝑒5%(0%46%)

"% − 1)HQ,    
  if 𝛾# ≤ 𝑡",                      (60a) 

and 

𝑐:
𝑟
[(1 − 𝑒4"C$)𝛿(𝛥B) + 𝑐=(1 − 𝛿(𝛥B))] 

= 𝑒5%(0%46%)"%𝑒"0%

⎣
⎢
⎢
⎡ 𝑐8"𝑒5!(0!46!)

"! O 𝑒4"0𝑒45!(046!)"!𝑑𝑡
	0!

	6!

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H +

𝑐8#
𝑟
(𝑒4"0! − 𝑒4"6%)⎦

⎥
⎥
⎤
 

 +𝑒"0% P𝑐8#𝑒5%(0%46%)
"% ∫ 𝑒4"0𝑒45%(046%)"%𝑑𝑡	0%

	6%
+𝑐!𝑒4"0% G𝑒5%(0%46%)

"% − 1)HQ,  

if 𝛾# ≤ 𝑡",                     (60b) 
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Thus, 𝛥B is also a function of 𝑡". Consequently, if 𝑡" is known, then 𝛥B can be determined 
by (60a) if 𝑚𝑖𝑛( 𝛾#, 𝑡") = 𝛾#, and (60b) if 𝑚𝑖𝑛( 𝛾#, 𝑡") = 𝑡", respectively. 

For notational convenience, let 𝐾$ be the right-hand side of (60a) and (60b), then the 
following results can be obtained. 

Theorem 1. If 𝐾$ > 0  and 𝑑𝐾$/𝑑𝑡" > 0 , then the optimal replenishment schedule 
satisfies 

(i) (57a) and (58), if 𝑚𝑖𝑛( 𝛾#, 𝑡") = 𝛾#, and 

 (ii)(57b) and (58), if 𝑚𝑖𝑛( 𝛾#, 𝑡") = 𝑡",  

is uniquely determined and minimizes 𝑇𝐶$%, for i = 1, 2. 

Proof: The proof is similar to Yang's (2006). 

4.1.2 The case of 𝝁 ≥ 𝜸𝒓 

The necessary conditions for 𝑇𝐶$%(𝑡" , 𝛥B) in (30c) and (30d) to be minimized can be written 
as follows, for i = 3, 4. 

𝜕𝑇𝐶$@
𝜕𝑡"

(𝑡" + 𝛥$ + 𝛥B) 

= 𝑓(𝜇) l
𝑐8"𝑒5!(0!46!)

"! O 𝑒4"0𝑒45!(046!)"!𝑑𝑡
	0!

	3

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H − 𝑐!𝑒4"0! G𝑒5%(0!46%)

"% − 1H
m 

+b1 +
𝑑𝛥$
𝑑𝑡"

c 𝑓(𝜇)

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

l
𝑐8#𝑒5%(0%46%)

"% O 𝑒4"0𝑒45%(046%)"%𝑑𝑡
	0%

	6%

+𝑐!𝑒4"0% G𝑒5%(0%46%)
"% − 1H

m

−𝑒4"0% P
𝑐:
𝑟 o1 − 𝑒

4"(;40%)p𝛿(𝑇 − 𝑡#) + 𝑐=o1 − 𝛿(𝑇 − 𝑡#)pQ

+𝑒4";O P𝑐:𝛿(𝑇 − 𝑡) + G
𝑐:
𝑟 (𝑒

"(;40) − 1) − 𝑐=𝑒"(;40)H 𝛿′(𝑇 − 𝑡)Q 𝑑𝑡
	;

	0%
		
⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 

−𝑇𝐶$@(1 +
!C#
!0!
) = 0,                                                         (61a) 

and 

𝜕𝑇𝐶$F
𝜕𝑡"

(𝑡" + 𝛥$ + 𝛥B) 

= 𝑓(𝜇)

⎣
⎢
⎢
⎡ 𝑐8"𝑒5!(0!46!)

"! O 𝑒4"0𝑒45!(046!)"!𝑑𝑡
	0!

	3

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H +

𝑐8#
𝑟
(𝑒4"0! − 𝑒4"6%)⎦

⎥
⎥
⎤
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+b1 +
𝑑𝛥$
𝑑𝑡"

c 𝑓(𝜇)

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

l
𝑐8#𝑒5%(0%46%)

"% O 𝑒4"0𝑒45%(046%)"%𝑑𝑡
	0%

		6%

+𝑐!𝑒4"0% G𝑒5%(0%46%)
"% − 1H

m

−𝑒4"0% P
𝑐:
𝑟 o1 − 𝑒

4"(;40%)p𝛿(𝑇 − 𝑡#) + 𝑐=o1 − 𝛿(𝑇 − 𝑡#)pQ

+𝑒4";O P𝑐:𝛿(𝑇 − 𝑡) + G
𝑐:
𝑟 (𝑒

"(;40) − 1) − 𝑐=𝑒"(;40)H 𝛿′(𝑇 − 𝑡)Q 𝑑𝑡
	;

	0%
		
⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 

−𝑇𝐶$F(1 +
!C#
!0!
) =0,                                                         (61b) 

Thus, from (61a), (58) and (59a), (61b), (58) and (59b), the following results can be 
obtained. 
𝑐:
𝑟
[(1 − 𝑒4"C$)𝛿(𝛥B) + 𝑐=(1 − 𝛿(𝛥B))] 

= 𝑒5%[(0%46%)"%4(0!46%)"%]𝑒"0% l
𝑐8"𝑒5!(0!46!)

"! O 𝑒4"0𝑒45!(046!)"!𝑑𝑡
	0!

3

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H − 𝑐!𝑒4"0! G𝑒5%(0!46%)

"% − 1H
m 

+𝑒"0% P𝑐8#𝑒5%(0%46%)
"% ∫ 𝑒4"0𝑒45%(046%)"%𝑑𝑡	0%

	0!
+𝑐!𝑒4"0% G𝑒5%(0%46%)

"% − 1HQ,   

 if 𝛾# ≤ 𝑡",                  (62a) 

and 

𝑐:
𝑟
[(1 − 𝑒4"C$)𝛿(𝛥B) + 𝑐=(1 − 𝛿(𝛥B))] 

= 𝑒5%(0%46%)"%𝑒"0%

⎣
⎢
⎢
⎡ 𝑐8"𝑒5!(0!46!)

"! O 𝑒4"0𝑒45!(046!)"!𝑑𝑡
	0!

	3

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H +

𝑐8#
𝑟
(𝑒4"0! − 𝑒4"6%)⎦

⎥
⎥
⎤
 

+𝑒"0% P𝑐8#𝑒5%(0%46%)
"% ∫ 𝑒4"0𝑒45%(046%)"%𝑑𝑡	0%

	6%
+𝑐!𝑒4"0% G𝑒5%(0%46%)

"% − 1HQ,    

 if 𝛾# ≥ 𝑡".                  (62b) 

Thus, 𝛥B is also a function of 𝑡". Consequently, if 𝑡" is known, then 𝛥B can be determined 
by (62a) if 𝑚𝑖𝑛( 𝛾#, 𝑡") = 𝛾#, and (62b) if 𝑚𝑖𝑛( 𝛾#, 𝑡") = 𝑡", respectively. 

Similarly, for notational convenience, let 𝐾B be the right-hand side of (62a) and (62b), then 
the following results can be obtained. 

Theorem 2. If 𝐾B > 0  and 𝑑𝐾B/𝑑𝑡" > 0 , then the optimal replenishment schedule 
satisfies  
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(61a) and (58), if 𝑚𝑖𝑛( 𝛾#, 𝑡") = 𝛾#, and  

(61b) and (58), if 𝑚𝑖𝑛( 𝛾#, 𝑡") = 𝑡", 

 is uniquely determined and minimizes 𝑇𝐶$%, for i = 3, 4. 

Proof: The proof is similar to Yang's (2006). 

Note that 𝑇𝐶$%(𝑡" , 𝑡#, 𝑇) is a continuous function on a compact set [0, 𝑇]; for i =1, 2, 3, 4, 
we know a global minimum solution exists. It is clear that 𝑇𝐶$%(𝑡" , 𝑡#, 𝑇) is neither minimum at 
	𝑡" = 0 nor at 	𝑡" = 𝑇. The optimal solution obtained from (57a, b) and (50), (61a, b) and (58) 
is not on the boundary; hence, the unique solution is a global optimal. 

4.2 Part 2: 𝝁 ≥ 𝒕𝒓 

From (39), (46) and (52), we know that 𝑡- is a function of 𝑡". Thus, 𝑇𝐶B%(𝑡" , 𝑡#, 𝑇) can be 
reduced to be a function of 𝑡" and 𝛥B, denoted by 𝑇𝐶B%(𝑡" , 𝛥B), where  𝛥B = 𝑇 − 𝑡# and 𝛥$ =
𝑡# − 𝑡", i =1, 2, 3. 

The necessary conditions for 𝑇𝐶B%(𝑡" , 𝛥B) in (56a)-(56c) to be minimized can be written as 
follows, for i = 1, 2, 3. 

𝜕𝑇𝐶B$
𝜕𝑡"

(𝑡" + 𝛥$ + 𝛥B) 

= 𝑓(𝑡")

⎣
⎢
⎢
⎢
⎢
⎡ 𝑐8"𝑒5!(0!46!)

"! O 𝑒4"0𝑒45!(046!)"!𝑑𝑡
	0!

	6!

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H − 𝑐!𝑒4"0! G𝑒5%(0!46%)

"% − 1H

+
𝑐8#
𝑟
(𝑒4"0! − 𝑒4"3) ⎦

⎥
⎥
⎥
⎥
⎤

 

  −𝑐8#𝛼#𝛽#(𝑡" − 𝛾#)G%4$𝑒45%(0!46%)
"% G𝑊 − ∫ 𝑒5%(046%)"%𝑓(𝑡)𝑑𝑡3

0!
H∫ 𝑒4"0𝑑𝑡	3

	0!
 

+b1 +
𝑑𝛥$
𝑑𝑡"

c𝑓(𝜇)

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

l
𝑐8#𝑒5%(0%46%)

"% O 𝑒4"0𝑒45%(046%)"%𝑑𝑡
	0%

	3

+𝑐!𝑒4"0% G𝑒5%(0%46%)
"% − 1H

m

−𝑒4"0% P
𝑐:
𝑟 o1 − 𝑒

4"(;40%)p𝛿(𝑇 − 𝑡#) + 𝑐=o1 − 𝛿(𝑇 − 𝑡#)pQ

+𝑒4";O P𝑐:𝛿(𝑇 − 𝑡) + G
𝑐:
𝑟 (𝑒

"(;40) − 1) − 𝑐=𝑒"(;40)H 𝛿′(𝑇 − 𝑡)Q 𝑑𝑡
	;

	0%
		
⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 

−𝑇𝐶B$ G1 +
!C#
!0!
H = 	0,	                                                    (63a) 

𝜕𝑇𝐶BB
𝜕𝑡"

(𝑡" + 𝛥$ + 𝛥B) 

= 𝑓(𝑡")

⎣
⎢
⎢
⎡ 𝑐8"𝑒5!(0!46!)

"! O 𝑒4"0𝑒45!(046!)"!𝑑𝑡
	0!

	6!

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H +

𝑐8#
𝑟
(𝑒4"0! − 𝑒4"6%)⎦

⎥
⎥
⎤
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+b1 +
𝑑𝛥$
𝑑𝑡"

c 𝑓(𝜇)

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

l
𝑐8#𝑒5%(0%46%)

"% O 𝑒4"0𝑒45%(046%)"%𝑑𝑡
	0%

	3

+𝑐!𝑒4"0% G𝑒5%(0%46%)
"% − 1H

m

−𝑒4"0% P
𝑐:
𝑟 o1 − 𝑒

4"(;40%)p𝛿(𝑇 − 𝑡#) + 𝑐=o1 − 𝛿(𝑇 − 𝑡#)pQ

+𝑒4";O P𝑐:𝛿(𝑇 − 𝑡) + G
𝑐:
𝑟 (𝑒

"(;40) − 1) − 𝑐=𝑒"(;40)H 𝛿′(𝑇 − 𝑡)Q 𝑑𝑡
	;

	0%
		
⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 

−𝑇𝐶BB(1 +
!C#
!0!
) =0,                                                          (63b) 

𝜕𝑇𝐶B@
𝜕𝑡"

(𝑡" + 𝛥$ + 𝛥B) 

= 𝑓(𝑡")

⎣
⎢
⎢
⎡ 𝑐8"𝑒5!(0!46!)

"! O 𝑒4"0𝑒45!(046!)"!𝑑𝑡
	0!

	6!

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H +

𝑐8#
𝑟
(𝑒4"0! − 𝑒4"3)⎦

⎥
⎥
⎤
 

+b1 +
𝑑𝛥$
𝑑𝑡"

c 𝑓(𝜇)

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

l
𝑐8#𝑒5%(0%46%)

"% O 𝑒4"0𝑒45%(046%)"%𝑑𝑡
	0%

	3

+𝑐!𝑒4"0% G𝑒5%(0%46%)
"% − 1H

m

−𝑒4"0% P
𝑐:
𝑟 o1 − 𝑒

4"(;40%)p𝛿(𝑇 − 𝑡#) + 𝑐=o1 − 𝛿(𝑇 − 𝑡#)pQ

+𝑒4";O P𝑐:𝛿(𝑇 − 𝑡) + G
𝑐:
𝑟 (𝑒

"(;40) − 1) − 𝑐=𝑒"(;40)H 𝛿′(𝑇 − 𝑡)Q 𝑑𝑡
	;

	0%
		
⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 

−𝑇𝐶B@(1 +
!C#
!0!
) =0,                                                         (63c) 

and 

𝜕𝑇𝐶B%
𝜕𝛥B

(𝑡" + 𝛥$ + 𝛥B) 

= 𝑒4";𝑓(𝜇)O P𝑐:𝛿(𝑇 − 𝑡) + G
𝑐:
𝑟 o𝑒

"(;40) − 1p − 𝑐=𝑒"(;40)H 𝛿H(𝑇 − 𝑡)Q 𝑑𝑡
	0)

	;
 

−𝑇𝐶B%= 0,        i =1, 2, 3.                                                   (64) 

From (39), (46) and (52), we have  

1 + !C#
!0!

= 𝑒45%(0%46%)"% uIJ0*KL
+%(-.*%)"%

I(3)
− 𝛼#𝛽#(𝑡 − 𝛾#)G%4$ ∫ 	𝑒5%(046%)"%𝑑𝑡	0%

	3 v, 

                                                   if 𝛾# ≤ 𝑡" ≤ 𝜇.           (65a) 

1 + !C#
!0!

= 𝑓(𝑡6)𝑒45%(0%46%)
"%/𝑓(𝜇),                      if 𝑡" ≤ 𝜇 ≤ 𝛾#.           (65b) 

1 + !C#
!0!

= 𝑓o𝑡6p𝑒45%[(0%46%)
"%4(346%)"%]/𝑓(𝜇),             if 𝑡" ≤ 𝛾# ≤ 𝜇.           (65c) 
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Thus, from (63a), (64) and (65a); (63b), (64) and (65b); (63c), (64) and (65c), the following 

results can be obtained. 
𝑐:
𝑟
[(1 − 𝑒4"C$)𝛿(𝛥B) + 𝑐=(1 − 𝛿(𝛥B))]	𝑓(𝜇) 

= 𝑒𝛼𝑜(𝑡𝑜−𝛾𝑜)
𝛽𝑜 F𝑓G𝑡𝛾H𝑒

𝛼𝑜(𝜇−𝛾𝑜)
𝛽𝑜
−𝑓(𝜇)𝛼𝑜𝛽𝑜(𝑡 − 𝛾𝑜)

𝛽𝑜−1? 	𝑒𝛼𝑜(𝑡−𝛾𝑜)
𝛽𝑜𝑑𝑡

	𝑡𝑜

	𝜇
I 𝑒"$# 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

𝑓(𝑡")

⎣
⎢
⎢
⎢
⎢
⎡ 𝑐!"𝑒)!($!#'!)

"! ? 𝑒#"$𝑒#)!($#'!)"!𝑑𝑡
	$!

	'!

+𝑐/𝑒#"$! *𝑒)!($!#'!)
"! − 13 − 𝑐/𝑒#"$! *𝑒)#($!#'#)

"# − 13

+
𝑐!.
𝑟
(𝑒#"$! − 𝑒#",) ⎦

⎥
⎥
⎥
⎥
⎤

		−𝑐!.𝛼.𝛽.(𝑡" − 𝛾.)0##1𝑒#)#($!#'#)
"# @𝑊 −? 𝑒)#($#'#)"#𝑓(𝑡)𝑑𝑡

,

$!
A? 𝑒#"$𝑑𝑡

	,

	$! ⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 

+𝑒"0%𝑓(𝜇) P𝑐8#𝑒5%(0%46%)
"% ∫ 𝑒4"0𝑒45%(046%)"%𝑑𝑡	0%

	3 +𝑐!𝑒4"0% G𝑒5%(0%46%)
"% − 1)HQ,    

 if 𝛾# ≤ 𝑡" ≤ 𝜇.                (66a) 
𝑐:
𝑟
[(1 − 𝑒4"C$)𝛿(𝛥B) + 𝑐=(1 − 𝛿(𝛥B))]𝑓(𝜇) 

= 𝑒5%(0%46%)"%𝑒"0%𝑓(𝑡") R
𝑐8"𝑒5!(0!46!)

"! ∫ 𝑒4"0𝑒45!(046!)"!𝑑𝑡	0!
	6!

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H + <2%

"
(𝑒4"0! − 𝑒4"6%)

S  

+𝑒"0%𝑓(𝜇) P𝑐8#𝑒5%(0%46%)
"% ∫ 𝑒4"0𝑒45%(046%)"%𝑑𝑡	0%

	6%
+𝑐!𝑒4"0% G𝑒5%(0%46%)

"% − 1HQ, 

     if 𝑡" ≤ 𝜇 ≤ 𝛾#.               (66b) 

 
<&
"
[(1 − 𝑒4"C$)𝛿(𝛥B) + 𝑐=(1 − 𝛿(𝛥B))]𝑓(𝜇)= 

𝑒5%[(0%46%)"%4(346%)"%]𝑒"0%𝑓(𝑡") R
𝑐8"𝑒5!(0!46!)

"! ∫ 𝑒4"0𝑒45!(046!)"!𝑑𝑡	0!
	6!

+𝑐!𝑒4"0! G𝑒5!(0!46!)
"! − 1H + <2%

"
(𝑒4"0! − 𝑒4"3)

S  

+𝑒"0%𝑓(𝜇) P𝑐8#𝑒5%(0%46%)
"% ∫ 𝑒4"0𝑒45%(046%)"%𝑑𝑡	0%

	3 +𝑐!𝑒4"0% G𝑒5%(0%46%)
"% − 1HQ,    

   if 𝑡" ≤ 𝛾# ≤ 𝜇.               (66c) 

Thus, 𝛥B is also a function of 𝑡". Consequently, if 𝑡" is known, then 𝛥B can be determined 
by (66a) if 𝛾# ≤ 𝑡" ≤ 𝜇; (66b) if 𝑡" ≤ 𝜇 ≤ 𝛾#; and (66c) if 𝑡" ≤ 𝛾# ≤ 𝜇. 

Similarly, for notational convenience, let 𝐾@ be the right-hand side of (66a)-(66c), then the 
following results can be obtained. 

Theorem 3. If 𝐾@ > 0  and 𝑑𝐾@/𝑑𝑡" > 0 , then the optimal replenishment schedule 
satisfies 
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(i)  (63a) and (64), if 𝛾# ≤ 𝑡" ≤ 𝜇, 

(ii) (63b) and (64), if 𝑡" ≤ 𝜇 ≤ 𝛾#, and  

(iii) (63c) and (64), if 𝑡" ≤ 𝛾# ≤ 𝜇,  

is uniquely determined and minimizes 𝑇𝐶B%, for i = 1, 2, 3. 

Proof: The proof is similar to Yang's (2006).  

Note that 𝑇𝐶B%(𝑡" , 𝑡#, 𝑇) is a continuous function on a compact set [0, 𝑇], for i = 1, 2, 3, 
we know a global minimum solution exists. It is clear that 𝑇𝐶B%(𝑡" , 𝑡#, 𝑇) is neither minimum at 
	𝑡" = 0 nor at 	𝑡" = 𝑇. The optimal solution obtained from (63a)-(63c) and (64) is not on the 
boundary, and hence the unique solution is a global optimal. 

In summary, from the relations among the parameters 𝜇, 𝑟" , 𝑟#  and 𝒕𝒓 , we have the 
following results in Table 2. 

Table 2. Each Proposed Model with Its Constraints 

Model Constraint 

𝑇𝐶11 𝜇 ≤ 𝑟" ≤ 𝑟. ≤ 𝒕𝒓 

𝑇𝐶13 
𝜇 ≤ 𝒕𝒓 ≤ 𝑟" ≤ 𝑟. 
𝜇 ≤ 𝑟" ≤ 𝒕𝒓 ≤ 𝑟. 

𝑇𝐶14 
𝑟" ≤ 𝑟. ≤ 𝜇 ≤ 𝒕𝒓 
𝑟" ≤ 𝜇 ≤ 𝑟. ≤ 𝒕𝒓 

𝑇𝐶15 𝑟" ≤ 𝜇 ≤ 𝒕𝒓 ≤ 𝑟. 

𝑇𝐶31 𝑟" ≤ 𝑟. ≤ 𝒕𝒓 ≤ 𝜇 

𝑇𝐶33 𝑟" ≤ 𝒕𝒓 ≤ 𝜇 ≤ 𝑟. 

𝑇𝐶34 𝑟" ≤ 𝒕𝒓 ≤ 𝑟. ≤ 𝜇 

Thus, according to Table 2 and the relation among 𝜇, 𝑟", and 𝑟#, the proposed model may 
be considered in the following Table 3. 

Table 3. Relation And Proposed Model May Be Considered 

Relation The model may be considered 
𝜇 ≤ 𝑟" ≤ 𝑟. 𝑇𝐶11、𝑇𝐶13 
𝑟" ≤ 𝜇 ≤ 𝑟. 𝑇𝐶14、𝑇𝐶15、𝑇𝐶33 
𝑟" ≤ 𝑟. ≤ 𝜇 𝑇𝐶14、𝑇𝐶31、𝑇𝐶34 

Based on the above-discussed equations, Theorems 1-3, and Table 3, an algorithm for 
finding the optimal solution is established (see Appendix A). 

5. Numerical examples 

Many products might exhibit ramp-type demand with a deterioration rate that can be 
modeled using a three-parameter Weibull distribution, such as fashion apparel, high-tech gadgets, 
perishable food products, or seasonal products like holiday decorates. These examples illustrate 
how ramp-type demand and Weibull distribution deterioration are relevant in various industries, 
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each facing unique inventory and demand management challenges. The demand rate and 
parameters for Weibull deterioration distribution and relevant costs are stated in the following 
examples. 

Example 1. Let 𝑓(𝑡) = 100 + 50𝑡, W =75, 𝜇 = 0.02, 𝛿(𝑡) = 𝑒4-.U0, 𝑐# =150, 𝑐8#= 0.5, 𝑐8#= 
0.8, 𝑐:= 15, 𝑐== 30, 𝑐!=7.5, 𝛼#= 0.05, 𝛽#= 2, 𝛾#= 0.05,  𝛼"= 0.03, 𝛽"= 2, 𝛾"= 0.03 and r 
= 0.06 in appropriate units. By Algorithm A and Table 3, we know that if   𝜇 ≤ 𝑟" ≤ 𝑟#, then  
𝑇𝐶$$ and  𝑇𝐶$B are considered. Thus, we get the optimal present value of the total relevant 
cost per unit time 𝑇𝐶∗ = 𝑚𝑖𝑛{𝑇𝐶$$,𝑇𝐶$B} = 𝑚𝑖𝑛{164. 450, 167.185} = 164.450 = 𝑇𝐶$$	, the 
optimal replenishment cycle T= 1.53229, the optimal stock period in OW 𝑡# = 1.47693, the 
optimal stock period in RW 𝑡" =  0.77641 and the optimal order quantity S = 153.827. 

Example 2. Let 𝑓(𝑡) = 200 + 100𝑡, W =220, 𝜇 = 0.04, 𝛿(𝑡) = 𝑒4-.U0, 𝑐# =150, 𝑐8#= 0.5, 
𝑐8#= 0.8, 𝑐:= 15, 𝑐== 30, 𝑐!=7.5, 𝛼#= 0.05, 𝛽#= 2, 𝛾#= 0.05,  𝛼"= 0.03, 𝛽"= 2, 𝛾"= 0.03 
and r = 0.06 in appropriate units. By Algorithm A and Table 3, we know that if 𝑟" ≤ 𝜇 ≤ 𝑟#, 
then  𝑇𝐶$@, 𝑇𝐶$F, and 𝑇𝐶BB are considered. Thus, we get the optimal present value of the total 
relevant cost per unit time 𝑇𝐶∗ = 𝑚𝑖𝑛{𝑇𝐶$@,𝑇𝐶$F,𝑇𝐶BB}  = 𝑚𝑖𝑛{214.316, 214.668, 214.819} 
=214.316 =	𝑇𝐶$@	, the optimal replenishment cycle T = 1.19277, the optimal stock period in 
OW 𝑡# = 1.15807, the optimal stock period in RW 𝑡"  =  0.10232 and the optimal order 
quantity S = 240.79. 

Example 3. Let 𝑓(𝑡) = 150 + 300𝑡, W =150, 𝜇 =0.06, 𝛿(𝑡) = 	 𝑒4-.U0 , 𝑐# =150, 𝑐8#= 0.5, 
𝑐8#= 0.8, 𝑐:= 15, 𝑐== 30, 𝑐!=7.5, 𝛼#= 0.05, 𝛽#= 2, 𝛾#= 0.05,  𝛼"= 0.03, 𝛽"= 2, 𝛾"= 0.03 
and r = 0.06 in appropriate units. By Algorithm A and Table 3, we know that if  𝑟" ≤ 𝑟# ≤ 𝜇, 
then  𝑇𝐶$@, 𝑇𝐶B$, and 𝑇𝐶B@ are considered. Thus, we get the optimal present value of the total 
relevant cost per unit time 𝑇𝐶∗ = 𝑚𝑖𝑛�𝑇𝐶$@,	𝑇𝐶B$,	𝑇𝐶B@�= min	{199.751, 209.586, 210.379} =	
199.751=	𝑇𝐶$@	, the replenishment cycle T= 1.25340, the stock period in OW 𝑡#=1.21391, the 
stock period in RW 𝑡"= 0.34690 and the order quantity S = 207.79.  

Example 4. This example employs the parameter values from Example 3 to assess whether 
input parameter variations affect the optimal solution's sensitivity. The numerical outcomes of 
the sensitivity analysis are displayed in Table 4. 
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Table 4. Sensitivity Analysis for Each Parameter 

         Decision 
Parameter 𝑇𝐶 𝑡. T 𝑡" 𝑆 

𝜇 = 0.02 193.14 1.25455 1.29581 0.32182 200.18 
𝜇 = 0.04 196.48 1.23366 1.27401 0.33500 204.08 
𝜇 = 0.06 199.75 1.21391 1.25340 0.34690 207.79 

Trend ↗ ↘ ↘ ↗ ↗ 
𝑏 = 200 196.47 1.23365 1.27400 0.33499 203.95 
𝑏 = 300 199.75 1.21391 1.25340 0.34690 207.79 
𝑏 = 400 202.98 1.19521 1.23390 0.35770 211.58 

Trend ↗ ↘ ↘ ↗ ↗ 
𝑊 = 100 204.44 1.19871 1.23911 0.62557 204.91 
𝑊 = 150 199.75 1.21391 1.25340 0.34690 207.79 
𝑊 = 200 197.33 1.25408 1.29319 0.09271 215.04 

Trend ↘ ↗ ↗ ↘ ↗ 
𝑐. = 100 156.90 1.04858 1.07916 0.17229 178.41 
𝑐. = 150 199.75 1.21391 1.25340 0.34690 207.79 
𝑐. = 200 237.40 1.35431 1.40182 0.49696 233.12 

Trend ↗ ↗ ↗ ↗ ↗ 
𝑐!. = 0.4 190.91 1.23069 1.26844 0.36476 210.80 
𝑐!. = 0.5 199.75 1.21391 1.25340 0.34690 207.79 
𝑐!. = 0.6 208.52 1.19627 1.23748 0.32816 204.64 

Trend ↗ ↘ ↘ ↘ ↘ 
𝑐!" = 0.7  198.91 1.23535 1.27472 0.36971 211.64 
𝑐!" = 0.8  199.75 1.21391 1.25340 0.34690 207.79 
𝑐!" = 0.9  200.51 1.19496 1.23456 0.32677 204.40 

Trend ↗ ↘ ↘ ↘ ↘ 
𝑐/ = 5 190.30 1.29724 1.33502 0.43577 222.78 
𝑐/ = 7.5 199.75 1.21391 1.25340 0.34690 207.79 
𝑐/ = 10 208.07 1.14969 1.19070 0.27881 196.33 

Trend ↗ ↘ ↘ ↘ ↘ 
𝛽. = 1 203.57 1.39456 1.43527 0.54182 240.71 
𝛽. = 2 199.75 1.21391 1.25340 0.34690 207.79 
𝛽. = 3 160.24 1.60117 1.63348 0.69929 267.44 

Trend ↘ N/A N/A N/A N/A 
𝛼. = 0.04 194.31 1.25773 1.29623 0.38786 214.70 
𝛼. = 0.05 199.75 1.21391 1.25340 0.34690 207.79 
𝛼. = 0.06 204.82 1.17530 1.21572 0.31061 201.68 

Trend ↗ ↘ ↘ ↘ ↘ 

From the Table 4, the following managerial insights are obtained. 

(1) When the growth period 𝜇 or the slope of demand rate b increases, the optimal present 
value of total cost TC, the optimal stock period in RW 𝑡" and the optimal order quantity S 
also increases, while the optimal stock period in OW 𝑡# and the optimal replenishment cycle 
T decrease. 

(2) As the capacity of the owned warehouse W grows, the optimal stock period in OW 𝑡# , the 
optimal replenishment cycle T and the optimal order quantity S exhibit an upward trend, 
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whereas the optimal present value of total cost TC and the stock period in RW 𝑡" experience 
a decline. 

(3) When the replenishment cost 𝑐# elevates, the optimal present value of total cost TC, the 
optimal stock period in OW 𝑡#, the optimal replenishment cycle T, the optimal stock period 
in RW 𝑡", and the optimal order quantity S also rise accordingly. 

(4) As the holding cost in OW 𝑐8#, the holding cost in RW 𝑐8", the deteriorated item cost 𝑐! 
or the scale parameter  𝛼# increases, the optimal present value of total cost TC rises, while 
the optimal stock period in OW 𝑡#, the optimal replenishment cycle T, the optimal stock 
period in RW 𝑡" and the optimal order quantity S decrease. 

(5) When the shape parameter 𝛽# rises, the optimal present value of total cost TC declines. 
And the trend for other decision variables is not certain. 

6. Conclusions 

The paper introduces a two-warehouse partial backlogging inventory model, as presented 
by Yang (2006), to incorporate a ramp-type demand for deteriorating items. The primary 
objective is to establish the optimal replenishment policy that minimizes the present value of 
the total relevant cost per unit time. Based on the values of growth period, the stock period in 
RW, the location parameter of Weibull distribution in OW, and the location parameter of 
Weibull distribution in RW, there are seven models be discussed. Three Theorems and an 
algorithm for finding the optimal solution are established. To validate the results of the proposed 
inventory model, numerical examples and sensitivity analysis are provided.  

The numerical findings offer valuable insights for inventory managers as follows: 1) To 
reduce the optimal present value of total cost, it is essential to decrease the replenishment cost, 
the holding cost in OW, or the deteriorated item cost, but to increase the shape parameter of 
Weibull distribution in OW. 2) If there is an increase in the growth period, the slope of demand 
rate, the capacity of the owned warehouse, or the replenishment cost but a decrease in the 
holding cost in OW, the holding cost in RW, the deteriorated item cost or the scale parameter 
of Weibull distribution in OW, it is advisable to increase the optimal order quantity. 3) When 
the capacity of the owned warehouse or the replenishment cost experiences an increase, the 
replenishment cycle should be extended; however, if the growth period, the slope of demand 
rate, the holding cost in OW, the holding cost in RW, the deteriorated item cost or the scale 
parameter of Weibull distribution in OW increases, the replenishment cycle must be shortened. 

To advance research in this area, this model can be extended in various manners. For 
example, the model can be extended by incorporating a demand rate function that is a function 
of the sale price or the retailer strategy of offering discounted prices to attract more customers 
when advance-cash-credit payment is adopted. Furthermore, we could also add advertisement 
strategy into consideration. 
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Appendix A. Algorithm for finding the optimal solution 

Step 0. Input parameter values.  

Step 1. Compare the values of 𝜇,  𝛾",  and 𝛾#.   

Step 1.1. If 𝜇 ≤ 𝑟" ≤ 𝑟#, then from Table 3, we know that only 𝑇𝐶$$ and 𝑇𝐶$B need to 
be considered. Go to Step 2. 

Step 1.2. If 𝑟" ≤ 𝜇 ≤ 𝑟#, then from Table 3, we know that 𝑇𝐶$@,  𝑇𝐶$F and 𝑇𝐶BB could 
be considered. Go to Step 4.  

Step 1.3. If 𝑟" ≤ 𝑟# ≤ 𝜇, then from Table 3, we know that 𝑇𝐶$@,  𝑇𝐶B$ and 𝑇𝐶B@ could 
be considered. Go to Step 6. 

Step 2. Calculate 𝑡", 𝑡#, ∆B for 𝑇𝐶$$ and 𝑇𝐶$B. 

Step 2.1. By (57a), (15) and (60a) to find 𝑡", 𝑡# and  ∆B. And then from (30a) to 
calculate  𝑇𝐶$$.  

Step 2.2. By (57b), (21) and (60b) to find 𝑡", 𝑡# and  ∆B. And then from (30b) to 
calculate  𝑇𝐶$B. 

Step 3. Set 𝑇𝐶(𝑇∗) = min {	𝑇𝐶$$	, 𝑇𝐶$B	} and then 𝑇∗ = 𝑡# + ∆B are the optimal solution, and 
stop. 

Step 4. Calculate 𝑡", 𝑡#, ∆B for 𝑇𝐶$@, 𝑇𝐶$F and 𝑇𝐶BB.   

Step 4.1. By (61a), (15) and (62a) to find 𝑡", 𝑡# and  ∆B. And then from (30c) to 
calculate  𝑇𝐶$@.  

Step 4.2. By (61b), (21) and (62b) to find 𝑡", 𝑡# and  ∆B. And then from (30d) to 
calculate  𝑇𝐶$F.  

    Step 4.3. By (63b), (46) and (65b) to find 𝑡", 𝑡# and  ∆B. And then from (56b) to 
calculate  𝑇𝐶BB.  

Step 5. Set 𝑇𝐶(𝑇∗)	= min {𝑇𝐶$@, 𝑇𝐶$F, 𝑇𝐶BB} and then  𝑇∗ = 𝑡# + ∆B are the optimal solution, 
and stop. 

Step 6. Calculate 𝑡", 𝑡#, ∆B for 𝑇𝐶$@, 𝑇𝐶B$ and 𝑇𝐶B@.   

Step 6.1. By (61a), (15) and (62a) to find 𝑡", 𝑡# and  ∆B. And then from (30c) to 
calculate  𝑇𝐶$@.  

Step 6.2. By (63a), (39) and (65a) to find 𝑡", 𝑡# and  ∆B. And then from (56a) to 
calculate  𝑇𝐶B$.  

    Step 6.3. By (63c), (52) and (65c) to find 𝑡", 𝑡# and  ∆B. And then from (56c) to 
calculate  𝑇𝐶B@.  

Step 7. Set 𝑇𝐶(𝑇∗) = min {	𝑇𝐶$@	, 𝑇𝐶B$, 𝑇𝐶B@} and then 𝑇∗ = 𝑡# + ∆B are the optimal solution, 
and stop. 
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