
 

 

 
 

 

 

 

1. Introduction 

Businesses and corporationsmust make properdecisions to secure their survival and prosper 
in today’s competitive world. How many items and when to purchase is the central issue for 
inventory management. Many inventory models under various conditions with respect to 
different vital factors are developed to help decision-makers decide their best strategies. For 
three decades, researchers accepted that Moon and Choi (1998) and Hariga and Ben-Daya (1999) 
are independently constructed inventory models to consider the reordered point as a new 
decision variable, which can be supported by citations of 187 and 285 times, respectively. On 
the other hand, only eight papers have been referred to Horowitz and Daganzo (1986) to indicate 
that academic society almost forgot Horowitz and Daganzo (1986) which is thefirst paper to 
consider the reordered point as a new decision variable. After examinating Horowitz and 
Daganzo (1986), we found that they could only handle some domains for their constructed 
inventory model. Then, they applied a graphical method to locate the optimal solution for 48% 
of regions of their original domain. Recently, Chuang et al. (2018) tried to arouse the attention 
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A recent publication proposed a revised solution for the 
inventory models presented by the first paper to treat the 
ordering point as a new variable and a normal distribution 
for the expected demand during shortage periods. Notably, 
the recent paper extended the domain of study from almost 
half to nearly total, marking a significant enhancement. In 
this paper, we challenge the necessity of their reduced 
nearly total domain and demonstrate that a pair of lower 
and upper bounds of their nearly total domain are 
unnecessary. We rigorously establish the existence and 
uniqueness of the optimal solution within the original 
domain. We provide a detailed explanation to reveal the 
distinct character of this kind of solution approach. Our 
findings show that our refined approach yields conclusive 
results, potentially attracting practitioners to delve into 
inventory models with a normal distribution for the 
expected demand during shortage periods. 
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of practitioners by examining Horowitz and Daganzo (1986) to extend the search domain,which 
was improved from 48% to 91%. The main goal of this paper is to provide a further revision of 
Horowitz and Daganzo (1986) and Chuang et al. (2018) such that academic society will pay 
attention to Horowitz and Daganzo (1986) as the first paper for a hot research topic, to treat 
the reorder point as a decision variable, in inventory systems. There are eight papers have cited 
Horowitz and Daganzo (1986) in their references. Except Chuang et al. (2018), the other seven 
papers only mentioned Horowitz and Daganzo (1986) in their introduction, without any 
improvement. Interested readers please refer to Chuang et al. (2018) for the other papers. 

The purpose of this paper is twofold. First, we show that under the whole searching domain 
proposed by Horowitz and Daganzo (1986), the optimal solution exists and is unique. Chuang 
et al. (2018) mentioned that they covered 91% of the search domain to improve the coverage 
ratio of Horowitz and Daganzo (1986) with 48%. Our improvement is a 100 % coverage ratio 
for the searching domain. Second, we clearly explain Chuang et al. (2018) to indicate that their 
solution is correct but incomplete. Consequently, the shrinking domain with two sophisticated 
boundaries constructed by Chuang et al. (2018) becomes unnecessary. The remainder of this 
paper is organized as follows. 

In Section 2, we compare our results with those of previous studies. In Section 3, we provide 
notation and assumptions. We review the inventory model of Horowitz and Daganzo (1986) and 
Chuang et al. (2018) in Section 4. We briefly explain the derivation of a pair of lower and upper 
bounds proposed by Chuang et al. (2018). We point out that the assertion of Chuang et al. 
(2018) that the optimal solution is far away from the pair of bounds is not supported by their 
Example 2. Section 5 provides our improvement in determining the optimal solution for the 
entire domain. Two numerical Examples in Horowitz and Daganzo (1986) and Chuang et al. 
(2018) support our claim off	#√3σ! 2⁄ ( > 0	and g(Ω) > 0. Section 6 explains the difficulty in 
front of the traditional solution method to motivate the solution approach proposed by Chuang 
et al. (2018) and this paper. We conclude our findings in Section 7. 

2. The Problem Descriptions 

In the following, we mention the main contribution of our results.  

(i) Horowitz and Daganzo' solution approach (1986) only covered 45% of the domain areas 
proposed by Horowitz and Daganzo (1986).  

(ii) Chuang et al. (2018) developed an improved solution method to cover 91% of domain areas.  

(iii) In this paper, we showed that the optimal solution for the entire domain exists and is unique.  

Horowitz and Daganzo (1986) worked on mathematical methods to derive the search 
domain for the optimal solution for their proposed inventory model. However, they needed help 
to finish their analytic examination, and then they applied a graphical method to find the 
optimal solution. Chuang et al. (2018) and this paper concentrated on analytic procedures to 
locate the optimal solution. However, Chuang et al. (2018) tried to find the partial domain 
where the first derivative of the objective function is strictly increasing to guarantee the optimal 
solution'sexistence and uniqueness. Consequently, Chuang et al. (2018) only considered 91% of 
the entire domain. We examined the entire domain to ensure that the optimal solution exists 
and is unique. 
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The research gap is that up to now, there has yet to be theoretical support for the inventory 
model developed by Horowitz and Daganzo (1986) to prove that the minimum solution exists 
and is unique. 

Moon and Choi (1998) is the second paper to treat the reordered point as a new decision 
variable, and then Hariga and Ben-Daya (1999) is the third paper. There are 187 papers to cite 
Moon and Choi (1998) in their References. On the other hand, there are 285 papers referred to 
Hariga and Ben-Daya (1999). On the contrary, only eight articles mention Horowitz and 
Daganzo (1986). Moreover, Chuang et al. (2018) is the only paper that tried to provide a 
mathematical foundation for the inventory model developed by Horowitz and Daganzo (1986). 
This paper will provide a mathematical foundation for the existence and uniqueness of the 
minimum solution of the inventory model proposed by Horowitz and Daganzo (1986) to fulfill 
the research gap. 

Only one paper, Luo et al. (2020), cited Chuang et al. (2018) in its Reference. However, 
Luo et al. (2020) worked on Wu and Ouyang (2001) and Tung et al. (2010) to revise their 
iterative algorithms. Chuang et al. (2018) appeared in a long list of papers during the literature 
review by Luo et al. (2020). Hence, we claim that the incomplete theoretical foundation proposed 
by Chuang et al. (2018) did not arouse attention to the original article of Horowitz and Daganzo 
(1986). 

3. Notation and Assumptions 

To compare with Horowitz and Daganzo (1986) and Chuang et al. (2018), we use the same 
notation and assumptions as theirs. 

 is the annual demand (parts/year). 

 is the forecasted demand during the lead time. 

 is the fixed freight cost per regular shipment. 

 is the fixed freight cost per shipment expedited because of shortage. 

 is the standard derivation of the difference between predicted and actual demand (the 
measure of uncertainty) during the lead time. 

 is the safety factor: the multiple of  that determines the safety stock, a decision 
variable. 

 is the lead time. 

 is thepart value. 

 is the probability of shortages during the lead time. 

 is the shipment size (number of parts), a decision variable. 

 is the total annual cost, the objective function. 

 is the solution of , to express k as a function of . 
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 is the inventory cost per dollar per year. 

 is the safety stock. 

 is the reorder point. 

Assumptions of Horowitz and Daganzo (1986), Chuang et al. (2018), and our abbreviation 
are listed below: 

1. There is only one item in the inventory model. 

2. The probability of shortages follows a normal distribution, with , where  
is the cumulative distribution function of a unit normal random variable. 

3. All shortages are completely backlogged. 

4. To simplify the expression, we assume that . 

5.  is an auxiliary function assumed by Chuang et al. 
(2018). 

6. is the second auxiliary function assumed by Chuang et al. (2018). 

4. Brief Review of Previous Results 

We recall the original problem of an inventory model by Horowitz and Daganzo (1986) with 
the objective function, 

,             (4.1) 

for  and , where  is the safety and  is shipment size. For interested 
readers, please refer to Horowitz and Daganzo (1986) for derivations of their inventory 
model. 

They solved  to derive that 

 ,                          (4.2) 

Where  is an auxiliary abbreviation to simplify the expression denoted by us, with 

                         .                          (4.3) 

Based on Equation (4.2), for , Horowitz and Daganzo (1986) derived an upper 
bound for  as 

                               .                          (4.4) 

They plugged  of Equation (4.2) into Equation (4.1) to change the objective function 
with only one variable, , then 

                .            (4.5) 

Horowitz and Daganzo (1986) derived a very tedious solution procedure that had been 
discussed by Chuang et al. (2018) to motivate Chuang et al. (2018) to develop a new solution 
approach. For interested readers, please refer to Chuang et al. (2018) for a detailed discussion 
of the solution procedure of Horowitz and Daganzo (1986). 
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Chuang et al. (2018) found that 

                      .               (4.6) 

Motivated by Equation (4.6), Chuang et al. (2018) assumed their first auxiliary function, 
, as 

                      ,                  (4.7) 

with 

.                         (4.8) 

The original goal of Chuang et al. (2018) is to prove the existence and uniqueness of the 
optimal solution, that is, there is a unique root for , with the domain, 

                           .                      (4.9) 

However, owing to technical problems, Chuang et al. (2018) could not handle the entire 
domain of Equation (4.9), and then Chuang et al. (2018) claimed that  has a 
unique solution for a shrunk domain, 

                                 ,                            (4.10) 

Where  and  are a pair of lower and upper bound for , with a lower bound, 

,                             
(4.11) 

and an upper bound, 

.                           (4.12) 

In the following, we provide a brief review of how Chuang et al. (2018) find the findings of 
Equations (4.11) and (4.12). 

Chuang et al. (2018) tried to locate a lower bound,  and an upper bound,  with 
and , for . They had discussed that  to imply 

the possibility of such that their goal is revised as 

,                              (4.13) 

,                              (4.14) 

and 

,                              (4.15) 

for . 

Chuang et al. (2018) derived 

,              (4.16) 

and then they claimed that to prove  for  is equivalent to verify 

,                         (4.17) 
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for , since , based on Equation (4.2). 

Motivated by Equation (4.17), Chuang et al. (2018) assumed their second auxiliary function 
as 

,                         (4.18) 

such that to show  for  is converted to derive 

,                                (4.19) 

for . 

Chuang et al. (2018) obtained 

                    (4.20) 

They wanted  to imply  decreasing for  such that the inequality 
of Equation(4.19) can be simplified as . 

Referring to Equation (4.20), Chuang et al. (2018) wanted , to derive a possible 
lower bound as . 

Based on the above discussion, Chuang et al. (2018) changed their goal from Equation (15) 
to the following new setting, , ,and 

.                                (4.21) 

Based on data from Horowitz and Daganzo (1986), Chuang et al. (2018) claimed that 
, yielding that , is an acceptable lower bound. 

On the other hand, Chuang et al. (2018) showed that if , then  and 
, are both satisfied to imply that  is an acceptable upper bound. 

Under their shrunk domain, , Chuang et al. (2018) proved that 
the optimal solution of Equation (4.5)is unique. 

Chuang et al. (2018) mentioned that their lower bound, with  satisfy  
and their upper bound,  satisfies  such that they covered about  of 
the original searching domain. 

Chuang et al. (2018) pointed out that 

(i) Horowitz and Daganzo (1986) applied a graphic method to find the optimal solution 
that only covered 48% of the original search domain. 

(ii) The optimal solution of Example 2 is  that is far away from two boundaries 
 and , as proposed by Chuang et al. (2018). 

Consequently, they shrank the search domain to a 91% of the entire domain to guarantee 
the existence and uniqueness of the optimal solution that is an acceptable approach. 

5. Our Improvement  

Chuang et al. (2018) tried to apply the Intermediate Value Theorem to prove that 
 has a unique solution for  or for a reasonable sub-domain. 
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It is the existence and uniqueness problem for the optimal solution. We recall the Intermediate 
Value Theorem as follows: 

If  is a continuous function for and , then there is a point , say 
, satisfying . 

We know that the Intermediate Value Theorem is related to the existence of the root that 
is not related to the uniqueness of the root. 

Chuang et al. (2018) claimed that they shrank the searching domain from  to 
 with three desired properties: (a) , (b) , and (c)  for 

, where  is an auxiliary function satisfying  such that 
 and  have the same solutions. The Intermediate Value Theorem guarantees 

the existence of a solution for  that is not related to the uniqueness of the solution, 
such that the claim of Chuang et al. (2018) contained a questionable result. 

In the following, we provide a revision. Based on the property (c),  is strictly 
increasing for  to ensure the uniqueness of the solution for . 

We check their above assertion of Example 2 to compare the optimal solution,  
with two boundaries proposed by Chuang et al. (2018),  and  to find that 

 and  both are far away from one to indicate that their assertion, 
“  is far away from their boundaries  and ” is supported by their Example 2. 

However, we check Example 1 of Chuang et al. (2018) with the optimal solution, , 
and two boundaries, , and  to derive that , and 

. Owing to 2.2 being close to one, it reveals that their assertion “  is far away 
from their boundaries and ” is not supported by their Example 1. 

Motivated by the above discussion, the purpose of our improvement is twofold. First, we 
will show that under the original entire domain, , then has a unique 
solution, under data of two numerical examples in Horowitz and Daganzo (1986) and Chuang 
et al. (2018). Second, we show that the finding of Chuang et al. (2018) is correct but incomplete, 
such that our resultsprovide a complete solution. 

We refer to the findings of Equations (4.16) and (4.18), and then we rewrite as 

              (5.1) 

such that  and  have the same sign. 

From Equation (4.20), we obtain  for  and  for 
 to imply that  increases for  and then decreases for 
. 

From Equations (4.3) and (4.18), we rewrite Equation (4.18) as follows, 

.                  (5.2) 
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.                   (5.3) 
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By the Hospital rule, we evaluate 

,                (5.4) 

to yield 

                                .                             (5.5) 

From Equation (4.20), we know that  decreases for , and  of 
Equation (5.2) derived by Chuang et al. (2018), then we derive 

                                 .                             (5.6) 

On the other hand, we find 

.                         (5.7) 

We apply our results of ,  increases for , and  
to imply that there is a unique point, say  with  and  for , 
and , for . 

Similarly, we use our findings of ,  and  decreases for 
, to yield that there is a unique point, say  with  and , 

for , and , for . 

 

For ordinary readers, we begin to sketch the graph of . 

Owing to Equation (5.1), we know that  and  have the same sign. Hence, we 
will first sketch the graph of . 

We recall Equation (5.1), then we derive that 

.                     (5.8) 

Based on Equation (5.8), we find that  is concave down for , and is 
concave up for . 

We compute  to imply that 

.                         (5.9) 

We combine our findings in the following theorem. 

Theorem 1. There are two points  and  with  and 
 such that , for , and . Moreover, , 

for . 
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We obtain that based on Equation (5.1),  and  have the same sign. Hence, 
applying Theorem 1, we derive that  decreases for , and . On the 
other hand,  increases for . 

Chuang et al. (2018) already showed that  such that for , 
 further decreases to its minimum . 

Chuang et al. (2018) already showed that  to imply 

,                                 (5.11) 

since we know Equation (5.10) and  increases, for . 

 

Wefind that  increases, for . We recall that , increasing to 
 (derived by Chuang et al. (2018)) and then further increases until  such 

that there is a unique point, say  satisfying 

,                                (5.12) 

where . 

From our Theorem 1, we know that  decreases for  to its minimum, . 

 

In the following, based on numerical examples of Horowitz and Daganzo (1986), and Chuang 
et al. (2018), we will show that . We derive 

.                    (5.13) 

We recall data from Examples 1 and 2 of Horowitz and Daganzo (1986) and Chuang et al. 
(2018), with  parts per year,  per shipment,  per shipment, 

 per part,  per year (20%),  days,  parts for the first 
example, and  parts for the second example to derive that with , 

,                             (5.14) 

and with , 

.                            (5.15) 

Based on Equations (5.14) and (5.15), based on two numerical examples of Horowitz and 
Daganzo (1986) and Chuang et al. (2018), we derive that    

.                                (5.16) 

Moreover, based on the first example of Horowitz and Daganzo (1986), and Chuang et al. 
(2018) with , we derive that 
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On the other hand, according to the first example of Horowitz and Daganzo (1986) and 
Chuang et al. (2018) with , we find that 

.                  (5.18) 

We observe the findings of Equations (5.17) and (5.18), based on the examples of Horowitz 
and Daganzo (1986) and Chuang et al. (2018), we claim that 

.                            (5.19) 

We combine our derivations in the followingtheorem. 

 

Theorem2.Based on data from two numerical examples in Horowitz and Daganzo (1986) 
and Chuang et al. (2018), there is a unique point, say , with  such that , 
for  and , for . 

 

Based on our discussion above, we recall the results after Equations (5.7) and (5.8), then 
sketch the graph of  and  in the following. 

 

Fig 1. The Graph of . 
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Fig 2. The Graph of . 

 

We recall Equation (8) to imply that  and  have the same sign. Hence, 
according to our Theorem 2, we obtain the following theorem. 

Theorem 3. is the minimum solution for . 

Based on Theorem 3, we claim that the solution of  is the optimal solution, which 
will be denoted as Q∗. 

Therefore, we show that the optimal solution exists and is uniqueunder the original setting 
of . 

Chuang et al. (2018) derived the optimal solution for [σ! 2⁄ , 23Ω 25⁄ ], which is 91% of the 
entire domain. This study proves that the optimal solution proposed by Chuang et al. (2018) is 
the genuine optimal solution for the entire domain. Our results show that researchers will not 
worry about those optimal solutions occurring in (0, σ! 2⁄ ) or (23Ω 25⁄ ,∞). 

6. The Distinct Character of This Solution Approach 

Chuang et al. (2018) pointed out that Horowitz and Daganzo (1986) used a graphical 
method to locate the minimum solution for the sub-domain, 0 < 𝑄 < !√#$
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48% of the original domain, 0 < 𝑄 ≤ 𝛺. Based on , Horowitz and Daganzo (1986) 
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Equation (4.2) to convert a two-variable objective function, C(k, Q), into a one-variable objective 
function, C(k(Q), Q) , denoted as C(Q) . The optimal solution satisfies . Directly 
sketching the graph of  is a difficult task. Chuang et al. (2018) constructed an auxiliary 
function, g(Q), with the same sign as . Directly sketching the graph of g(Q) is still a 
difficult task. Chuang et al. (2018) constructed a second auxiliary function, f(Q), which has the 
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same sign as . Chuang et al. (2018) focused on finding a sub-domain; within it, g(Q) is 
strictly increasing, and then Chuang et al. (2018) developed a sub-domain as [σ! 2⁄ , 23Ω 25⁄ ]. 

By our analysis, the increasing sub-domain of g(Q) should be [Q$, Q"], with Q$ < σ! 2⁄ , 
and 23Ω 25⁄ < Q" . Consequently, the lower bound, σ! 2⁄ , and the upper bound, 23Ω 25⁄  
proposed by Chuang et al. (2018), become incomplete and redundant. 

Moreover, for the other two sub-domains, 0 < 𝑄 < 𝑄$ and Q" < 𝑄 < 𝛺, g(Q) is decreasing. 
However, g(Q) decreases in these two sub-domains that will not influence the uniqueness of 
solution for g(Q) = 0  in the entire domain, 0 < 𝑄 ≤ 𝛺 . Consequently, we can claim that 
Chuang et al. (2018) tried to find a sub-domain in which g(Q) is an increasing function that is 
a questionable solution direction. 

On the other hand, we admit the contribution of Chuang et al. (2018) to construct two 
auxiliary functions,	g(Q) and f(Q), to cleverly avoid the difficult task of examining the graph of 

 and analyzing , and . 

In several inventory models, authors claimed that their objective functions have the convex 
property such that their minimum solution exists. The convex property will imply that the 
second derivative is positive, and then the first derivative is an increasing function. Referring to 
this inventory model proposed by Horowitz and Daganzo (1986), g (Q) is an increasing function. 
Based on our Theorem 1, we know the zeros of  and then we sketch the graph of  at 
Figure 1. According to our Theorem 2, we know the zeros of  and then we sketch the 
graph of  at Figure 2. Owing to  and  having the same sign, we derive a 
unique solution, denoted as , the optimal solution of our objective function, . In this 
paper, we demonstrate that the inventory model proposed by Horowitz and Daganzo(1986) did 
not have the convex property because the convex property will imply that g(Q) is an increasing 
function. Referring to Figure 2, we derive that g(Q) decreases for  and Q" < 𝑄 ≤ 𝛺. 
Moreover, we can still prove that the critical point exists and is unique, which is the minimum 
point. 

The benefit of the analytic method proposed by Chuang et al. (2018) and this paper to the 
graphical method proposed by Horowitz and Daganzo (1986) is illustrated by Chuang et al. 
(2018). Based on two numerical examples mentioned by Horowitz and Daganzo (1986), the 
analytic method produces fewer cars against global warming and also saves money. 

7. Conclusion 

In this comprehensive investigation, we have thoroughly explored the entire search domain, 
, enabling us to unequivocally confirm the presence and singularity of the optimal solution. 

Consequently, the previously proposed lower and upper bounds, and  
as articulated by Chuang et al. (2018), become redundant. In conclusion, we extend an intriguing 
challenge for future research: the direct verification of two outcomes, , and 

, supported by numerical examinations from a managerial perspective, presents a 
captivating avenue for exploration. In this paper, we only applied the numerical method to 
support our assertions of f#√3σ! 2⁄ ( > 0, and . To develop a complete solution structure, 
in the future, to consider f#√3σ! 2⁄ ( ≤ 0, or , will be an exciting research problem. 
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