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Transportation of incompatible items is a major problems
for the logistic operators. Again today ceo-aware trans-
portation is very much appreciated by the international bod-
ies. In a transportation system, the realization of carbon-
emission can be incorporated as an important part of op-
timization. Now, the infrastructure of surface transporta-
tion is developed through the world including third world
countries (like India, South-africa, Bangladesh, etc). In the
present study, we incorporated the above problems and de-
veloped profit maximization of solid transportation problem
with carbon emission under type-2 Fuzzy environment. So,
a new concept to solve profit maximization transportation
problem including sales revenue, purchase cost, transporta-
tion cost, procurement cost and carbon-emission cost has
been proposed while transporting some goods from sources
to destinations. In this model, two transportation schemes
with carbon emission (WCE) and with out carbon-emission
(WOCE) have been designed. We consider maximization of
the total profit in these two models. In the model few pa-
rameters are treated as Gaussion fuzzy type-2 variable i.e.
purchase cost, selling price, transportation and procurement
cost. Critical Value (CV) based reduction help us to trans-
form fuzzy type-2 to type-1 variable. To solve the problem
in deterministic way we have to utilized Genetic Algorithm
(GA). Finally, numerical results presented to establish the
originality of the investigation.

1. Introduction

Heley (1962) in the year 1962, first developed the concept of STP/3D- Transporta-

∗corresponding author
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tion problem. The STP is the method of supplies certain products from manufacturing
points (sources) to the different demand points (destinations) using different conveyances
keeping in mind the factor of different transportation capacities and transportation costs,
fixed charge costs, etc so that total transportation cost is minimum. While dealing with
real-life problems, vagueness appears in the transportation system due to insufficient in-
formation about the system or for some unforeseen troubles like strikes, natural disaster,

festivals, etc. So consideration of above uncertain environment Jana (2022) in trans-
portation problem is important for practical purposes. STP is nothing but an extension
of traditional transportation problem (TP/2D-Transportation Problem) which considers
source and demand constraints only. In STP Sifaoui and Aider (2022), Bera and Mon-
dal (2022) conveyance capacity constraint is added with source and demand constraints
shown in Figure 1. Also in the survey, there are many works in which TP/STPs are
considered under the different uncertain environments. The TP was suggested by Hitch-
cock (1941) and then mentioned by Koopmans (1949) elaborately. Later Dantzig (1951)
formulated the TP as a special class of linear programming problems and developed a
special form of simplex technique. Based on Das et al. (1999), the interval number
TPs were converted into deterministic multi-objective problems. Saad and Samir (2003)
and Chanas and Kuchta (1996) suggested the solution algorithm for solving the TPs
in a fuzzy environment. Yang and Liu (2007) investigated a fixed charge STP under
the fuzzy environment with fuzzy direct costs, fuzzy supplies, fuzzy demands, and fuzzy
conveyance capacities as an expected value scheme / chance-constrained programming
scheme / dependent -chance programming model and solved using fuzzy simulation and
a heuristic method- tabu search algorithm.

Sources

Sources

Destination

Destination

GTP

Sources

Sources

Destination

Destination

STP

Figure 1: Illustration of GTP and STP.

Over the last few decades, global warming has received an urgent attention by the
governments, industries, general public and academics. As a consequence, in the for-
mulation and solution of decision making problems— such as supply chain problems,
manufacturing problems, inventory control system, etc., effects of green house gases are
considered. More over it is well known that carbon emission is one of the main causes of
global warming. As per the estimation of ECOFYS (2010), 15% of global environmental
pollution is due to the transportation. In a survey, it is found that road transportation

causes 1
5

th
of total carbon emission in the European Union. Thus transportation has

negative effect on the environment. For this reason, Governments and other regulatory
bodies has introduced several policies such as mandatory carbon emission capacity, cap
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and trade, cap, carbon emission tax, etc. to control the total carbon emission to the
environment. However, very few operational research papers deals with the impact of
carbon emission in the transportation system. To mention a few, Chen and Wang (2016)
investigated the optimal ordering and transportation mode selection decision under dif-
ferent carbon emission reduction policies. Recently, Sengupta et al. (2018) presented a
multi-objective solid transportation problem including the cost due to carbon emission
in the other transportation costs and taken the transportation parameters as gamma
type 2 fuzzy in nature. Guo et al. (2018) addressed a green transportation scheduling
problem with pickup time and transport mode selections. They minimized the total
carbon emission along with the sum of transportation related costs.

Type-2 fuzzy sets are used due to its flexibility and degrees of uncertainty and it
is treated as three dimension. Thus, type-2 Jana et al. (2021) sets are more efficient
for modelling uncertain problems Khalifa et al. (2021) accurately than the type-1 fuzzy
variable. The logical operations of type-2 fuzzy were explored by Mizumoto and Tanaka
(1981), and Prade and Dubois (1980). Later on, a significant number of theoretical
research works on the property of type-2 fuzzy variables are Cheng (2004), Coupland
(2007), Prade and Dubois (1980), etc. and its many applications have been presented
Bit et al. (1993), Greenfield et al. (2012), Hasuike and Ishii (2009) etc..

Here, we have presented profit maximization of a multi-item STP with Gaussian
type-2 fuzzy parameters. Several types of conveyances are used for transportation of
goods from sources to destinations, and cost due to CO2 emitted by these vehicles is
taken into account. A transportation system is formulated with respect to a merchant
who purchases the source amounts at different origins and sells the transported amount
at different destinations as per the demands at destinations. Purchasing costs and sell-
ing prices at different origins and destinations respectively are different. Transporta-
tion costs, availabilities at sources, demands at the destinations, procurement costs and
conveyance capacities are considered as Gaussian type-2 fuzzy variables. Total carbon
emission due to road transports is evaluated and cost due to this emission is added with
the other transportation-related costs.

In general, materials made in wealthy countries emit fewer carbon emissions but cost
more to purchase. Emerging market products, on the other hand, have larger carbon
emissions but lower procurement costs. The most relevant suppliers and order quan-
tity should be assessed together to achieve lower procurement costs and fewer carbon
emissions. Furthermore, because of economic conditions and electric energy mix, pro-
curement costs and carbon emissions differ by country. As a result, if manufactures
shift their production bases or switch suppliers to countries with lower carbon emission
levels, overall carbon emissions could be lowered globally. this study presents a procure-
ment choice for supplier selection and order amount in order to reduce carbon emissions
and costs while taking into account various carbon levels in various nations. In real
applications, the computing complexity of a Gaussian type-2 fuzzy number is extremely
high due to the fuzzy membership function. Some defuzzification approaches have been
offered in the literature to avoid this problem. We present Critical Value (CV) based
reduction strategies for a Gaussian type-2 fuzzy variable. When we use the new meth-
ods to develop a mathematical model with Gaussian type-2 fuzzy coefficients, they are
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significantly easier to implement than the old approaches. The formulated green STP
with Gaussian type-2 fuzzy parameters are transformed to a crisp using CV-based reduc-
tion method and credibility measures. Then it is solved using GA with Roulette wheel
selection, arithmetic crossover and random mutation. Thus the present model mainly
investigates the following:

− A multi-item green STP is considered in profit maximization form containing the
sales revenue, purchasing cost, procurement cost, transportation cost and cost due
to vehicle and road-related carbon emission.

− A computationally efficient defuzzification process of Gaussian type-2 fuzzy variables
is presented.

− Transportation problems with Gaussian type-2 fuzzy variable are designed and solved.

− Chance-constrained type programming model with Gaussian type-2 fuzzy variables
is formulated.

2. Preliminaries

2.1. Type-1 and type-2 fuzzy variable

Let U be a universal set. A fuzzy set (i.e. type-1 fuzzy set) F̃ is a set in which each
element u of U has a membership value µ

F̃
(u) ∈ [0, 1]. The fuzzy set F̃ is expressed as

Kundu et al. (2014)

F̃ = {(u, µ
F̃
(u)) : µ

F̃
(u) ∈ [0, 1],∀u ∈ U} (2.1)

Now if the membership function µ
F̃
(u) of u ∈ U is again fuzzy (not a crisp value) then

F̃ is called a type-2 fuzzy set. The type-2 fuzzy set F̃ is expressed as Mendel and John
(2002)

F̃ = {((u, v), µ
F̃
(u, v)) : ∀u ∈ U,∀v ∈ Ju ⊆ [0, 1]} (2.2)

where Ju is called primary membership function of u ∈ U and is the domain of µ
F̃
(u, v),

the secondary membership function of u so that v ∈ Ju is the primary membership grade
of u. Here µ

F̃
(u, v) ∈ [0, 1].

Let U be the universal set and Ω be the collection of subsets of U so that Ω is
closed under arbitrary union, intersection and complements in U. Let a set function
Pos : Ω 7→ [0, 1] be such that Liu and Liu (2007)

1) Pos(φ) = 0 and Pos(U) = 1.

2) For any collection {Ai | i ∈ I} of Ω (finite, countable or uncountable)
Pos(

⋃

i∈I Ai) =
∑

i∈I Pos(Ai).

Then Pos is called the possibility measure and the triplet (U,Ω, Pos) is called the
possibility space. Let X : U 7→ ℜ be a function such that for any t ∈ ℜ, the set
{u ∈ U | X(u) ≤ t} ∈ Ω.

Then X is called a fuzzy variable. Now instead of ℜ if X be a measurable map from
U to [0, 1] i.e. for any t ∈ [0, 1], the set{u ∈ U | X(u) ≤ t} ∈ Ω then X is called regular
fuzzy variable (RFV). The collection of all RFV on [0,1] is denoted by ℜ([0, 1]).

If a set function ˜Pos : Ω 7→ ℜ([0, 1]) be such that { ˜Pos(A) | Ω ∋ Aatom} is a family
of mutually independent RFVs and ˜Pos satisfies the condition Liu and Liu (2010).
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Theorem 1 (See Qin et al., 2011). Let by CV reduction method the type-2 triangular

fuzzy variable ξ̃i = (ti1, t
i
2, t

i
3, θl,i, θr,i) is reduced to ξi for i = 1, 2, . . . , n. Let all the ξi are

mutually independent and pi ≥ 0 for i = 1, 2, . . . , n. Then for the generalized credibility

level α ∈ (0, 1), C̃r{
∑n

i=1 piξi ≤ k} ≥ α is equivalent to

n
∑

i=1

(1− 2α+ (1− 4α)θr,i)pit
i
1 + 2αpit

i
2

1 + (1 − 4α)θr,i
≤ k if α ∈ (0, 0.25]

n
∑

i=1

(1− 2α)pit
i
1 + (2α+ (4α − 1)θl,i)pit

i
2

1 + (4α− 1)θl,i
≤ k if α ∈ (0.25, 0.5]

n
∑

i=1

(2α − 1)pit
i
3 + (2(1 − α) + (3− 4α)θl,i)pit

i
2

1 + (3− 4α)θl,i
≤ k if α ∈ (0.5, 0.75]

n
∑

i=1

(2α − 1 + (4α − 3)θr,i)pit
i
3 + 2(1− α)pit

i
2

1 + (4α − 3)θr,i
≤ k if α ∈ (0.75, 1].

Corollary 1. From the above theorem, it is obvious that the expression C̃r{
∑n

i=1 piξi ≥
k} ≥ α is equivalent to

n
∑

i=1

(1− 2α+ (1− 4α)θl,i)pit
i
3 + 2αpit

i
2

1 + (1− 4α)θl,i
≤ k if α ∈ (0, 0.25]

n
∑

i=1

(1− 2α)pit
i
3 + (2α + (4α− 1)θr,i)pit

i
2

1 + (4α − 1)θr,i
≤ k if α ∈ (0.25, 0.5]

n
∑

i=1

(2α− 1)pit
i
1 + (2(1 − α) + (3− 4α)θr,i)pit

i
2

1 + (3− 4α)θr,i
≤ k if α ∈ (0.5, 0.75]

n
∑

i=1

(2α− 1 + (4α− 3)θl,i)pit
i
1 + 2(1− α)pit

i
2

1 + (4α − 3)θl,i
≤ k if α ∈ (0.75, 1].

Theorem 2 (See Qin et al., 2011). Let by CV reduction method the type-2 Gaussian

fuzzy variable ξ̃i = (µi, σ
2
i , θl,i, θr,i) is reduced to ξi for i = 1, 2, . . . , n. Let all the ξi are

mutually independent and pi ≥ 0 for i = 1, 2, . . . , n. Then for the generalized credibility

level α ∈ (0, 1),C̃r{
∑n

i=1 piξi ≤ k} ≥ α is equivalent to

n
∑

i=1

pi(µi − σi

√

2 ln (1 + (1− 4α)θr,i)− 2 ln 2α ≤ k if α ∈ (0, 0.25]

n
∑

i=1

pi(µi − σi

√

2 ln (1 + (4α − 1)θl,i)− 2 ln(2α + (4α− 1)θl,i)) ≤ k if α ∈ (0.25, 0.5]

n
∑

i=1

pi(µi+σi

√

2 ln (1+(3−4α)θl,i)−2 ln(2(1−α)+(3−4α)θl,i)) ≤ k if α ∈ (0.5, 0.75]

n
∑

i=1

pi(µi+σi

√

2 ln (1+(4α−3)θr,i)−2 ln(2(1−α)) ≤ k if α ∈ (0.75, 1].
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Corollary 2. From the above theorem, it is obvious that the expression C̃r{
∑n

i=1 piξi ≥
k} ≥ α is equivalent to

n
∑

i=1

pi(µi + σi

√

2 ln (1 + (1− 4α)θl,i)− 2 ln 2α ≤ k if α ∈ (0, 0.25]

n
∑

i=1

pi(µi + σi

√

2 ln (1 + (4α− 1)θr,i)− 2 ln(2α + (4α − 1)θr,i)) ≤ k if α ∈ (0.25, 0.5]

n
∑

i=1

pi(µi−σi

√

2 ln (1+(3−4α)θr,i)−2 ln(2(1−α)+(3−4α)θr,i)) ≤ k if α ∈ (0.5, 0.75]

n
∑

i=1

pi(µi−σi

√

2 ln (1+(4α−3)θl,i)−2 ln(2(1−α)) ≤ k if α ∈ (0.75, 1].

3. Notations and Assumptions

Following notations and assumptions are considered for this model.

3.1. Notations (For r-th item)

− M : number of sources (i = 1, 2, . . . ,M).

− N : number of destinations (j = 1, 2, . . . , N).

− K: number of conveyances (k = 1, 2, . . . ,K).

− R: number of different items (r = 1, 2, . . . , R).

− Sr
j : unit selling price (in $) of the product at j-th destination.

− P r
i : unit purchasing cost (in $) of the product at i-th source.

− Cr
ijk: unit transportation cost (in $) for transportation of the production from i-th

source to j − th destination by k-th conveyance.

− Ar
i : available quantity of the product at i-th source.

− Br
i : necessary quantity of the product at j-th destination.

− Ek: capacity of k-th conveyance.

− xrijk: a decision variable which represents the transported amount of the product
from i-th source to j-th destination by k-th conveyance.

− BM r
i : unit procurement cost for product at i-th source.

− CEk: carbon emission by vehicle k from i-th source to j-th destination.

− φk: fuel emission factor of vehicle k

− αij: road specific constant from i-th source to j-th destination. αij ǫ (0.09,0.2)

− βk: vehicle specific constant

− Vk: actual vehicle speed

− Ok: curb weight of conveyance k
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− Wr: actual load carried by vehicle

− θ: conversion factor that is defined as liter of fuel consumed per joule of energy
(θ = 1

(3.6.106.8.8)
)

− dsij : distance of path which is constant in this case

− δ: cost per unit emission of carbon (δ=2 unit).

− WCE: with carbon emission.

− WOCE: without carbon emission.

− ‘ ∼′: denotes Gaussian type-2 fuzzy uncertainty.

3.2. Assumptions

− Problems are unbalanced in these models.

− The amount of carbon emission by the k-th conveyance is,

CEk =

M
∑

i=1

N
∑

j=1

R
∑

r=1

φk

[

αij(Ok + xrijk ·Wr) + βkV
2
k

]

· θ · y(xrijk).dsij ; k = 1, 2, . . . ,K

=
M
∑

i=1

N
∑

j=1

R
∑

r=1

pijk1 +
M
∑

i=1

N
∑

j=1

R
∑

r=1

pijk2 · x
r
ijk

where

pijk1 = φk(αijOk + βkV
2
k ) · θ · y(x

r
ijk) · dsij · pijk2 = φkαij · θ ·Wr · y(x

r
ijk) · dsij.

It is clear that both pijk1 and pijk2 are vehicle and road-related constants containing
the expressions of few constants (See Guo et al., 2018).

− y(xrijk): a binary variable whose value is 1 if some amount is transported from i-th
source to j-th destination by k-th conveyance and 0 otherwise, i.e.

y(xrijk) =

{

1, for xrijk > 0,

0, otherwise.

4. Mathematical Formulation

In this model, some number of items are transported from some origins to some
destinations as per the demands at the destinations through some conveyances. Here,
we try to formulate a green transportation problem addressing the cost of greenhouse
gas (mainly carbon) emission due to ‘intermodal transportation’–along with other trans-
portation costs. The transportation from the origins to destinations is done by a group of
homogeneous vehicles which are light, medium or heavy trucks (say). The carbon emis-
sion of each vehicle is assumed to depend on the curb weight Ok, fuel emission factor
φk, road specific constant αij , vehicle specific constant βk, actual vehicle speed of vehicle
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Vk, actual load carried by the vehicle Wr, conversion factor θ, distance from origin to
destination dsij. Following Guo et al. (2018), the cost due to carbon emission is taken
as

M
∑

i=1

N
∑

j=1

R
∑

r=1

pijk1 +

M
∑

i=1

N
∑

j=1

R
∑

r=1

pijk2 · x
r
ijk

where

pijk1 =φk(αijOk + βkV
2
k ) · θ · y(x

r
ijk) · dsij ,

pijk2 =φkαij · θ ·Wr · y(x
r
ijk) · dsij .

4.1. Proposed Model:

Price of selling, cost of purchase, unit transportation cost, unit procurement cost,
availabilities origin, demands at destinations, and conveyance capabilities are considered
as Gaussian fuzzy type-2 variables. Thus the problem is

Max f1 =

M
∑

i=1

N
∑

j=1

K
∑

k=1

R
∑

r=1

{S̃r
j − P̃ r

i − C̃r
ijk −

˜BM
r

i }x
r
ijk

−
M
∑

i=1

N
∑

j=1

K
∑

k=1

R
∑

r=1

(pijk1 + pijk2x
r
ijk) · δ (4.1)

subject to
N
∑

j=1

K
∑

k=1

xrijk ≤ Ãr
i i = 1, 2, . . . ,M, r = 1, 2, . . . , R

M
∑

i=1

K
∑

k=1

xrijk ≥ B̃r
j j = 1, 2, . . . , N, r = 1, 2, . . . , R

M
∑

i=1

N
∑

j=1

R
∑

r=1

xrijk ≤ Ẽr
k k = 1, 2, . . . ,K,

xrijk ≥ 0,∀ i, j, k, r.























































(4.2)

where the binary variable y(xrijk) is defined by,

where y(xrijk) =

{

1, if xrijk > 0 for at least one r

0, if xrijk = 0 for all r

and the cost due to carbon emission is given as

CCE =

M
∑

i=1

N
∑

j=1

K
∑

k=1

R
∑

r=1

(pijk1 + pijk2x
r
ijk) · δ.
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4.2. Defuzzification of Gaussian type-2 fuzzy variables

Now to solve the above-mentioned problem, we construct a chance-constraint pro-
gramming model with the reduced fuzzy parameters. So, using generalized credibility
measure, the following chance-constraint programming model is constructed:

Max f̄

s.t Cr

{

∑M
i=1

∑N
j=1

∑K
k=1

∑R
r=1{S̃

r
j − P̃ r

i − C̃r
ijk −

˜BM
r

i }x
r
ijk

−
∑M

i=1

∑N
j=1

∑K
k=1

∑R
r=1(pijk1 + pijk2x

r
ijk).δk ≥ f̄

}

≥ α

Cr

{

∑N
j=1

∑K
k=1 x

r
ijk ≤ Ãr

i

}

≥ αi i = 1, 2, . . . ,M, r = 1, 2, . . . , R

Cr

{

∑N
j=1

∑K
k=1 x

r
ijk ≥ B̃r

j

}

≥ βj j = 1, 2, . . . , N, r = 1, 2, . . . , R

Cr

{

∑M
i=1

∑N
j=1

∑R
r=1 x

r
ijk ≤ Ẽk

}

≥ γk, k = 1, 2, . . . ,K, xrijk ≥ 0,∀i, j, k, r.







































































(4.3)

where y(xrijk) =

{

1, if xrijk > 0 for at least one r,

0, if xrijk = 0, for all r,

Here Maxf̄ indicates the maximum value and the objective function accomplishes with
generalized credibility α(0 < α ≤ 1). αi, βj , γk(0 < αi, βj , γk ≤ 1) which are the
present generalized credibility satisfaction levels at the origin and end point restriction
respectively for all i, j, k, r.

Case i: When αǫ(0,0.25], then the equivalent parametric programming problem for the
model given by (4.1) is:

Max f̄

s.t
∑M

i=1

∑N
j=1

∑K
k=1

∑R
r=1

[(

(µs̃rj
− σs̃rj

√

2 ln(1 + (1− 4α)θr,s̃rj )− 2 ln 2α)xrijk

−(µp̃ri
− σp̃ri

√

2 ln(1 + (1− 4α)θr,p̃ri )− 2 ln 2α)xrijk − (µc̃r
ijk

−σc̃r
ijk

√

2 ln(1 + (1− 4α)θr,c̃r
ijk

)− 2 ln 2α)xrijk

−(µ ˜BM
r

i
− σ ˜BM

r

i

√

2 ln(1 + (1− 4α)θ
r, ˜BM

r

i
)− 2 ln 2α)xrijk

)

−
∑M

i=1

∑N
j=1

∑K
k=1

∑R
r=1(pijk1 + pijk2x

r
ijk).δk

]

≥ f̄

and
∑N

j=1

∑K
k=1 x

r
ijk ≤ (µãri

− σãri

√

2 ln(1 + (1− 4αi)θr,ãri )− 2 ln 2αi),

i = 1, 2, . . . ,M ; r = 1, 2, . . . , R
∑M

i=1

∑K
k=1 x

r
ijk ≥ (µ

b̃rj
− σ

b̃rj

√

2 ln(1 + (1− 4βj)θr,b̃rj
)− 2 ln 2βj),

j = 1, 2, . . . , N ; r = 1, 2, . . . , R
∑M

i=1

∑N
j=1

∑R
r=1 x

r
ijk ≤ (µẽk−σẽk

√

2 ln(1+(1−4γk)θr,ẽk)− 2 ln 2γk), k=1, 2, . . . ,K



















































































































Case ii: When αǫ(2.5,0.5], then the equivalent parametric programming problem for
the model given by (4.1) is:
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Max f̄

s.t
M
∑

i=1

N
∑

j=1

K
∑

k=1

R
∑

r=1

[(

(µs̃r
j
−σs̃r

j

√

2 ln(1+(4α−1)θr,s̃r
j
)−2 ln(2α+(4α−1)θ1,sr

j
))xr

ijk

−(µp̃r
i
−σp̃r

i

√

2 ln(1+(4α−1)θr,p̃r
i
)−2 ln(2α+(4α−1)θ1,pr

i
))xr

ijk

−(µc̃r
ijk

−σc̃r
ijk

√

2 ln(1+(4α−1)θr,c̃r
ijk

)−2 ln(2α+(4α−1)θ1,cr
ijk

))xr
ijk

−(µ ˜BM
r

i
−σ ˜BM

r

i

√

2 ln(1+(4α−1)θr,B̃M
r

i
)−2 ln(2α+4α−1)θ1,BMr

i
))xr

ijk

)

−
M
∑

i=1

N
∑

j=1

K
∑

k=1

R
∑

r=1
(pijk1+pijk2x

r
ijk).δk

]

≥ f̄

and
N
∑

j=1

K
∑

k=1

xr
ijk ≤ (µãr

i
−σãr

i

√

2 ln(1+(4αi−1)θr,ãr
i
)−2 ln(2αi+(4αi−1)θ1,ar

i
)),

i = 1, 2, . . . ,M ; r = 1, 2, . . . , R
M
∑

i=1

K
∑

k=1

xr
ijk ≥ (µb̃r

j
−σb̃r

j

√

2 ln(1+(4βj−1)θr,b̃r
j
)−2 ln(2βj+(4βj−1)θr,br

j
)),

j = 1, 2, . . . , N ; r = 1, 2, . . . , R
M
∑

i=1

N
∑

j=1

R
∑

r=1
xr
ijk ≤ (µẽk−σẽk

√

2 ln(1+(4γk−1)θr,ẽk)−2 ln(2γk+(4γk−1)θ1,ek)),

k = 1, 2, . . . ,K























































































































































Case iii:
When αǫ(0.5,7.5], then the equivalent parametric programming problem for the model
given by (4.1) is:

Max f̄

s.t
M
∑

i=1

N
∑

j=1

K
∑

k=1

R
∑

r=1

[(

(µs̃r
j
+σs̃r

j

√

2 ln(1+(3−4α)θr,s̃r
j
)−2 ln(2(1−α)+(3−4α)θ1,s̃r

j
))xr

ijk

−(µp̃r
i
+σp̃r

i

√

2 ln(1+(3−4α)θr,p̃r
i
)−2 ln(2(1−α)+(3−4α)θ1,p̃r

i
))xr

ijk

−(µc̃ijk+σc̃r
ijk

√

2 ln(1+(3−4α)θr,c̃r
ijk

)−2 ln(2(1−α)+(3−4α)θ1,c̃r
ijk

))xr
ijk

−(µ ˜BM
r

i
+σ ˜BM

r

i

√

2 ln(1+(3−4α)θr,B̃M
r

i
)−2 ln(2(1−α)+(3−4α)θ1,B̃M

r

i
))xr

ijk

)

−
M
∑

i=1

N
∑

j=1

K
∑

k=1

R
∑

r=1
(pijk1+pijk2x

r
ijk).δk

]

≥ f̄

and
N
∑

j=1

K
∑

k=1

xr
ijk ≤ (µãr

i
+σãr

i

√

2 ln(1+(3−4αi)θr,s̃r
j
)−2 ln(2(1−αi)+(3−4αi)θ1,s̃r

j
)),

i = 1, 2, . . . ,M ; r = 1, 2, . . . , R
M
∑

i=1

K
∑

k=1

xr
ijk ≥ (µb̃r

j
+σb̃r

j

√

2 ln(1+(3−4βj)θr,s̃r
j
)−2 ln(2(1−βj)+(3−4α)θ1,s̃r

j
)),

j = 1, 2, . . . , N ; r = 1, 2, . . . , R
M
∑

i=1

N
∑

j=1

R
∑

r=1
xr
ijk ≤ (µẽk+σẽk

√

2 ln(1+(3−4γk)θr,s̃r
j
)−2 ln(2(1−γk)+(3−4γk)θ1,s̃r

j
)),

k = 1, 2, . . . ,K






















































































































































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Case iv: When αǫ(0.75,1], then the equivalent parametric programming problem for
the model given by (4.1) is (cf. section 1.2.4):

Max f̄

s.t
∑M

i=1

∑N
j=1

∑K
k=1

∑R
r=1

[(

(µs̃rj
+σs̃rj

√

2 ln(1+(4α−3)θr,s̃rj )−2 ln(2(α−1))xrijk

−(µp̃ri
+σp̃ri

√

2 ln(1+(4α−3)θr,p̃ri )−2 ln(2(1−α))xrijk

−(µc̃r
ijk

+σc̃r
ijk

√

2 ln(1+(4α−3)θr,c̃r
ijk

)−2 ln(2(1−α))xrijk

−(µ ˜BM
r

i
+σ ˜BM

r

i

√

2 ln(1+(4α−3)θ
r, ˜BM

r

i
)−2 ln(2(1−α))xrijk

)

−
∑M

i=1

∑N
j=1

∑K
k=1

∑R
r=1(pijk1+pijk2x

r
ijk).δk

]

≥ f̄

and
∑N

j=1

∑K
k=1 x

r
ijk ≤ (µãri

+σãri

√

2 ln(1+(4αi−3)θr,ãri )−2 ln(2(αi−1)),

i = 1, 2, . . . ,M ; r = 1, 2, . . . , R
∑M

i=1

∑K
k=1 x

r
ijk ≥ (µ

b̃rj
+σ

b̃rj

√

2 ln(1+(4βj−3)θ
r,b̃rj

)−2 ln(2(1−βj)),

j = 1, 2, .N ; r = 1, 2, . . . , R
∑M

i=1

∑N
j=1

∑R
r=1 x

r
ijk ≤ (µẽk+σẽk

√

2 ln(1+(4γk−3)θr,ẽk)−2 ln(2(γk−1)),

k = 1, 2, . . . ,K































































































































5. Solution Procedure

Real coded GA with Roulette wheel, arithmetic crossover, and random mulation has
been used to solve the reduced problem of Model. Here population is a set of feasible
solutions of proposed problem. The proposed model is solved with and without the
emitted carbon emission.

5.1. Parameters:

The different parameters are considered to solve the problem through GA as follows.

(MAXGEN)-number of generation (set 5000)

(POPSIZE)-size of population (set 100)

(PXOV ER)- probability of crossover (set 0.6)

(PMU)-probability of mutation (set 0.2).

5.2. Representation of Chromosome :

The variables in this proposed models are non-linear. So, a real - number is used to
represent the chromosome to solve the proposed model. Many non-linear real problems
used binary vectors but those were not effective .

5.3. Reproduction:

To evaluate the chromosome, Parents are randomly selected. The boundaries, de-
pendent variables, independent variables are determined from all (here 16) variables to
initialize the population.
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5.4. Crossover:

The main operator of GA is Crossover. It is used to exchange the parent’s charac-
teristics and communicate to the children. It may happen in two steps:

(i) Selection for crossover: A random number r is generated for each solution of P 1(T )
from the range [0..1]. The solution is considered for crossover, If r < pc, where pc
is crossover probability.

(ii) Crossover process: After selection some solution, Crossover has been applied. The
random number c has been taken from the range [0..1] for the pair of solutions Y1,
Y2. Y11 and Y21 are calculated using Y1, Y2 as follows :
where Y11=cY1+(1−c)Y2, Y21=c Y2+(1−c)Y1, where Y11, Y21 must meet the problem
constraints .

5.5. Mutation:

To recover any loss of some important characteristics, we need to perform mutation
operation. It also used for maintain population diversity. It is done in two steps:

(i) Mutation Selection : A random number r is generated for each solution of P 1(T )
from the range [0..1]. The solution is considered for mutation, If r <pm, where p m

is the mutation probability.

(ii) Mutation process: A random number r is selected with in the range [1..K]. Then

by replacement of xr within rth component of X they are random number. We get
a solution X = (x1, x2, . . . xk). Which is a solution through mutation.

5.6. Evaluation:

The evaluation function is used to solve this problem is

eval(Vi) = objective function value.

Through Roulette wheel selection chromosome. Here better chromosome has been
chosen from the population to create the new chromosomes. Presently, new enhanced
better chromosomes are produced through arithmetic crossover and mutation. The steps
of the proposed algorithm is given below:

Step-1: Begin
t=0; Where t is considered as number of iteration.
Step-2: Population(t) is initialized.
Step-3: Population(t) is evaluated.
Step-4: while(condition is true)
{
Population (t) is selected from Population (t− 1).
Perform crossover on Population (t)
Perform mutation on Population (t)
evaluate Population (t)
}
Step-5:Optimization Result Printed
Step-6: end.
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6. Numerical Experiments with Discussion and Practical Implication

To present the relevancy and utility of the proposed model, a numerical illustration
with two sources, two destinations and three convenances are considered. The model
described above are coded in GA to solve the profit maximization solid transportation
problem with and without carbon emission.

Input Data: Here, M = 2, N = 2, K = 3 and R = 5. Unit Transportation cost
(((crijk, k = 1, 2, 3; r = 1, . . . , 5), j = 1, 2), i = 1, 2), (availabilities, demands and con-
veyance capacities), (selling prices and purchase costs) and procurement costs are pre-
sented in Tables 1, 2, 3, 4 and 5 respectively.

Input of vehicle related constant pijk1 and road related constant pijk2 are presented
in Table 6

Table 1: Gaussian T2 fuzzy unit transportation costs (crijk) for both models.

r 1 2 3 4 5
k i/j 1 2 1 2 1 2 1 2 1 2

1
1

(2.4, 0.05,
0.5,0.6)

(2.2,.04,
0.3,0.5)

(2.1,.05,
0.7,0.8)

(1.9,.03,
0.5,0.4)

(2.2,.04,
0.6,0.8)

(2.6,.07,
0.4,0.3)

(2.3,.06,
0.5,0.7)

(2.4, .05,
0.5,0.6)

(2.4, .05,
0.5,0.6)

(2.4, .05,
0.5,0.6)

2
(1.6,0.03,
0.4,0.5)

(2.2,.04,
0.6,0.8)

(1.5,.02,
0.6,0.4)

(1.6,.02,
0.5,0.3)

(2.4,.06,
0.5,0.7)

(2.6,.07,
0.5,0.6)

(2,.04,
0.3,0.4)

(2.8,.08,
0.4,0.8)

(2.8,.08,
0.4,0.8)

(2.8,.08,
0.4,0.8)

2
1

(1.9,0.04,
0.5,0.7)

(1.2,.01,
0.2,0.5)

(1.2,.01,
0.7,0.4)

(1.5,.02,
0.4,0.3)

(1.7,.03,
0.4,0.3)

(1.8,.03,
0.4,0.3)

(1.4,.02,
0.5,0.7)

(2.1,.04,
0.7,0.6)

(2.1,.04,
0.7,0.6)

(2.1,.04,
0.7,0.6)

2
(1.9,0.04,
0.5,0.7)

(1.2,.01,
0.2,0.5)

(1.2,.01,
0.7,0.4)

(1.5,.02,
0.4,0.3)

(1.7,.03,
0.4,0.3)

(1.8,.03,
0.4,0.3)

(1.4,.02,
0.5,0.7)

(2.1,.04,
0.7,0.6)

(2.1,.04,
0.7,0.6)

(2.1,.04,
0.7,0.6)

3
1

(1.9,0.04,
0.5,0.7)

(1.2,.01,
0.2,0.5)

(1.2,.01,
0.7,0.4)

(1.5,.02,
0.4,0.3)

(1.7,.03,
0.4,0.3)

(1.8,.03,
0.4,0.3)

(1.4,.02,
0.5,0.7)

(2.1,.04,
0.7,0.6)

(2.1,.04,
0.7,0.6)

(2.1,.04,
0.7,0.6)

2
(1.9,0.04,
0.5,0.7)

(1.2,.01,
0.2,0.5)

(1.2,.01,
0.7,0.4)

(1.5,.02,
0.4,0.3)

(1.7,.03,
0.4,0.3)

(1.8,.03,
0.4,0.3)

(1.4,.02,
0.5,0.7)

(2.1,.04,
0.7,0.6)

(2.1,.04,
0.7,0.6)

(2.1,.04,
0.7,0.6)

Table 2: Solid transportation problem Parameters (µ, σ2; θl, θr) for model.

Source Demand
(

A11, A12, A13, A14, A15,
(

B11, B12, B13,B14, B15,
A21, A22, A23, A24, A25

)

B21, B22, B23, B24, B25,
)

(

72,.04,0.5,0.7)
(

60,.04,0.5,0.7),
(68,.04,0.5,0.7), (55,.04,0.5,0.7),
(71,.04,0.5,0.7), (52,.04,0.5,0.7),
(64,.04,0.5,0.7), (58,.04,0.5,0.7),
(75,.04,0.5,0.7), (60,.04,0.5,0.7),
(75,.04,0.5,0.7), (53,.04,0.5,0.7),
(80,.04,0.5,0.7), (60,.04,0.5,0.7),
(62,.04,0.5,0.7), (58,.04,0.5,0.7),
(65,.04,0.5,0.7), (52,.04,0.5,0.7),
(72,.04,0.5,0.7)

)

(57,.04,0.5,0.7)
)
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Table 3: Capacity of Conveyance (µ, σ2; θl, θr) at sources for both models

E1 E2 E3

(260, 1.0;0.8,1.8) (215,1.2;0.9,1.5) (225,1.0;1.1,1.5)

Table 4: Selling Prices and Purchase costs (µ, σ2; θl, θr) for both models

Selling Price Purchase costs

(45,1.0;0.8,1.8) (7,1.2;0.9,1.5)
(58,1.0;0.8,1.8) (9,1.2;0.9,1.5)
(35,1.0;0.8,1.8) (6,1.2;0.9,1.5)
(40,1.0;0.8,1.8) (10,1.2;0.9,1.5)
(50,1.0;0.8,1.8) (8,1.2;0.9,1.5)

Table 5: Procurement costs (µ, σ2; θl, θr) at sources for model

Item 1 2 3 4 5

BM r
i (4.5,1.0;0.8,1.8) (3.1,1.2;0.9,1.5) (2.23,1.0;1.1,1.5) (4.53,1.0;1.1,1.2) (3.13,1.0;1.1,1.3)

Table 6: Input of vehicle related constant pijk1 and road related constant pijk2

From/To k Destination-1 Destination-2

Source-1
1 (72.6, 0.013) (85.9, 0.013)
2 (80.8, 0.013) (95.2, 0.014)
3 (85.8, 0.013) (100.2, 0.014)

Source-2
1 (102.1, 0.013) (104.5, 0.014)
2 (116.3, 0.013) (110.12, 0.014)
3 (106.3, 0.013) (108.12, 0.014)

Table 7: Optimal solutions of the model without carbon emission

xr
ijk Profit

α=0.20
x1
112=67.75, x2

111=72.78, x3
111=70.27, x4

112=65.12, x4
113=42.72,

x5
113=92.15, x2

121=11.21, x5
121=10.42, x2

223=38.45, x4
222=55.02

12812.72

α=0.45
x3
111=72.16, x5

113=64.02, x1
122=108, x2

121=14.19, x2
123=73.09,

x3
121=32.05, x4

123=63.95, x5
123=40.47, x1

212=68.22, x2
211=27.16

15128.05

α=0.70
x3
111=72.18, x5

113=99.25, x1
122=112.05, x2

122=66.13, x2
123=21.17,

x3
121=3012, x4

123=72.01, x1
212=68.07, x2

213=76.23, x4
211=78.06

18270.79

α=0.95
x1
111=75, x2

111=72.78,x3
112=73.02, x4

112=2.72, x5
113=92.57,

x4
121=105.37, x3

211=11.04, x4
213=103.15, x1

223=80.52, x5
222=103.41

21390.62

Discussion:

After solving the problem with the above mentioned data using the proposed GA,
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Table 8: Optimal solutions of the model with carbon emission

xr
ijk CCE Profit

α=0.20
x1
112=65.05, x2

111=72.78, x3
113=79.12, x4

112=105.72, x5
113=74.12,

x5
121=54.05, x4

211=7.01, x4
212=10.52, x5

211=17.75, x3
223=15.92

825.0063 10628.43

α=0.45
x1
112=67.05, x2

113=74.12, x3
112=66.32, x3

113=4.53, x1124=53.15,
x5
113=92.43, x1

121=40.84, x1
122=13.75, x4

121=54.72, x5
121=36.51

841.06 10812.18

α=0.70
x2
111=12.98, x3

111=74.65, x1
121=109.15, x2

123=76.05, x3
121=3.97,

x4
123=71.02, x5

123=106.91, x1
212=68.07, x2

211=69.03, x2
211=4.26

865.12 16270.79

α=0.95
x3
111=72.98, x5

113=64.95, x1
122=108.05, x2

121=14.95, x2
123=73.17,

x3
121=31.92, x4

123=62.51, x5
123=39.27, x1

212=67.93, x2
211=80.06

893.06 19390.62

the compromise optimal solutions for the Model with and without carbon emission are
shown in Table 7 and Table 8. Here for different level of credibility, we get different sets
of optimal schedule. From these two tables, it is seen that, ignoring the effect of carbon
emission, a transportation system yields more profit. This is as per our expectation. As
expected, if the emission has no penalty for carbon emission, then management transports
more amount of item. The limits of amounts for WCE system is [10, 628.43, 19, 390.62],
where as this limit for WOCE is [12, 812.72, 21, 390.62]. For both the systems, the in-
creasing of credibility level (α) means increasing of flexibility of constraints. For these
reasons, increasing of (α) helps the system to enhance the amount of transportation and
finally increases the profit amount.

Figure 2: Rice supply business of a rice merchant.

Practical Implication:

The main aim of the proposed model is to maximize the profit against the market
prices at different markets including the cost of transportation and the cost due to
carbon emission. So indirectly, we want to minimize the effect of pollution to have a



✐

“M34N21” — 2023/6/6 — 17:06 — page 114 — #16
✐

✐

✐

✐

✐

114 SHARMISTHA HALDER AND BISWAPATI JANA

green transportation schedule. Due to the fluctuation of fuel price, road tax for different
routes, political issues, different types of procurement costs in each market, etc., are not
fixed. The transportation cost of carrying one unit (1000 kg) say of rice from sources to
destinations by conveyances and the other transport parameters are treated as Gaussian
type-2 fuzzy to represent the uncertainty in data. The business of a rice merchant in
Bangladesh is described as Figure 2. Here, a food supplier company of Bangladesh
supply one type of food product namely rice from three source points namely Faridpur,
Gopalganj and Jashore from Bangladesh by difference conveyances (lorry, truck, train) to
three destinations Kolkata, Midnapore and Burdwan of India. The suppliers use google
road map as their route. For this type of problems, the presented model can be applied
to determine optimum profit with uncertain data.

Comparison:

In 2016, Sinha et al. (2016) proposed Profit Maximization Solid Transportation
Problem with Trapezoidal Interval Type-2 Fuzzy Numbers. They considered profit max-
imization and time minimization transportation problem. Again they have taken the
unit purchase cost, unit selling price, unit transportation cost and transportation time
as trapezoidal interval type-2 fuzzy number. In comparison with this model, we have
considered a new concept to solve profit maximization and minimum carbon emission
problem including sales revenue, purchase cost, transportation cost,and procurement
cost which has been proposed while transporting some goods from sources to destina-
tions. Our approach considered carbon emmission with procurement cost which may
vary depending of the nations.

5. Conclusions

Transportation has significantly negative impacts on the environment due to the
emission of greenhouse gas or Co2. The model addresses a green transportation schedul-
ing problem by reducing the emission of Co2. The parameters i.e., supply, demand,
capacity of conveyance, selling price, purchase cost, cost of transportation and unit pro-
curement cost are Gaussian type-2 fuzzy parameters. The real coded GA has been used
to solve the proposed model and optimum results are obtained. The main contributions
are mentioned below:

− This is an attempt on STP where profit has been maximized including the effect of
carbon emission.

− Gaussian type-2 fuzzy has been used to introduce more uncertainty than type-1 fuzzy
in the transportation parameters.

Here, cost/tax (imposed by the Government) against carbon emission due to road trans-
portation has been added with the other costs of transportation. In some countries,
carbon cap and trade policy is followed. The present model can be directly implemented
to include the carbon cap and trade policy. Moreover, the carbon emission may be
separately minimized as an objective and the present problem can be formulated as a
multi-objective problem with the minimization of transportation and carbon costs.
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